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Abstract 

To understand the water balance and environmental effects under climate change condition, 

hydrological models are always used to simulate the hydrological cycle and predict future 

scenarios by using global climate models (GCMs) outputs. Due to the mismatch of the spatial 

resolution problem, different downscaling techniques are usually applied to GCMs outputs to 

generate the high resolution data for fitting the data requirement of hydrological models. As it is 

known, hydrological modeling always suffers from a number of uncertainties and leads to 

inaccuracy and unreliability of prediction. Uncertainties associated with climate change have 

been described as irreducible and persistent, and downscaling GCM outputs using downscaling 

methods also lead to considerable uncertainties. The purpose of this study is to quantify the 

propagation effects of uncertainties from statistical downscaling to hydrological modeling for 

improving the accuracy and reliability of hydrological prediction. A real-world case study has 

been provided in this study to demonstrate the feasibility of the proposed method. Statistical 

downscaling model (SDSM) was applied to downscale H3A2a (A2 emission scenario in Hadley 

Centre Coupled Model 3) outputs for uncertainties evaluation during hydrological modeling 

when the GCM outputs are used as inputs of a distributed hydrological model. 
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Introduction 

The growth of population and modern industries increases greenhouse gas emissions, which is 

considered to be the main reason for changing climate conditions. The Intergovernmental Panel 

on Climate Change (IPCC) claimed that there is strong evidence can support the conclusion that 

climate change has considerable impacts on the water basin and region (IPCC, 2007). Due to the 

changes in hydrological cycle, climate change can affect many aspects of water resources, 

including drinking water supplies, flood and drought, irrigation, and hydropower production, etc 

(Bae et al., 2011; Hassan et al., 2013). Global climate models (GCMs) can provide the credible 

prediction and projections of climate changes into the next 100 years. However, the resolutions 

of GCMs are too coarse (normally 350km per grid) to be directly applied to hydrological studies. 

The mismatches of spatial and temporal resolutions between GCM outputs and the data 

requirements of hydrological models are the major obstacles for evaluating the hydrologic 

impacts of climate change (Chen et al., 2012). 

Downscaling methods are developed to solve the spatial resolution mismatch problems when 

conducting hydrological studies. Traditionally, downscaling methods can be classified into two 
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major categories: dynamic downscaling and statistical downscaling. Due to the high 

computational demand and cost, dynamic downscaling methods (e.g. RCMs) are available for 

limited areas and studies (Solman and Nuñez, 1999). Moreover, the outputs of RCMs are still too 

coarse (e.g. the grid resolution for Canadian GCM is 45km) for most practical applications, such 

like hydrological studies. The statistical downscaling methods are developed to overcome these 

challenges. Compared to dynamic downscaling methods, statistical downscaling methods are 

normally easier and cost efficient to implement, and can link the state of some variables 

representing a large spatial scale and the state of other variables representing a smaller scale by 

using computationally efficient ways (Chen et al., 2011). Therefore, statistical downscaling 

methods are the most popular methods and widely used in hydrological impact studies under 

climate change scenarios (Ahmed et al., 2013; Khan et al., 2006; Tofiq and Guven, 2014). 

The terms “persistent”, “deep” and “irreducible” have been used to describe the uncertainties 

associated with the climate change, and these uncertainties exist at global and the regional scale 

(Ficklin, 2010). The major uncertainty in downscaling studies comes from the selection of 

different GCMs. Practically, different GCMs and scenarios will lead to considerable difference 

for downscaled results. However, those uncertainties come from different sources in GCMs, and 

it is hard to be quantified. For hydrological studies, one constant and well performed GCM is 

good enough for prediction in future projection for the specific study area. Moreover, the 

uncertainty propagation effect from statistical downscaling to hydrological modeling is the key 

concern in this study. Therefore, only one GCM model was selected for the study area and the 

evaluation of the corresponding propagation effect of uncertainties were conducted.  

The purpose of this study is to quantify and evaluate the uncertainty during statistical 

downscaling to hydrological modeling. A case study in Sichuan province of China was 

conducted to demonstrate the feasibility and performance of the developed method. The soil and 

water assessment tool (SWAT) model was used for hydrological modeling for the study area, 

and statistical downscaling model (SDSM) was used to address the mismatch of data 

requirement between the GCM outputs and hydrological models. 

Methodology 

SWAT 

SWAT was developed by the United States Department of Agriculture (USDA) Agricultural 

Research Service (ARS) and designed to predict the impacts of management practices on 

hydrology, sediment, and water quality in large complex watersheds with various soils, land use 

and management conditions over long periods of time (Arnold et al., 1995). As a physically 

based continuous distributed model, SWAT operates on a daily time step in an ungauged 

watershed. According to the digital elevation model (DEM), SWAT can partition watershed into 

many sub-basins for the modeling purposes, because the sub-areas within a watershed are 

dominated by different land uses or soils and are dissimilar enough in properties to impact 

hydrology of areas. Surface runoff volume is calculated by using the Curve Number (CN) 

method (USDA Soil Conservation Service, 1972). Channel routing is calculated using either the 

variable storage routing method or the Muskingum routing method, and Modified Universal Soil 

Loss Equation (MUSLE) is used to estimate the sediment yield at hydrological response units 

(HRUs) (Arnold et al., 1998). 



 

3 

 

P-factor and R-factor 

The degree of all uncertainties considered is evaluated by using P-factor, which is the percentage 

of observed data bracketed by the 95% prediction uncertainty (calculated at 2.5% and 97.5% 

levels of the cumulative distribution of output variables), or called 95PPU. R-factor is another 

measurement for quantifying the performance of uncertainty analysis, which is calculated at the 

average distance of uncertainty bands divided by the standard deviation of the observed data. 

Ideally, a P-factor of 1 and R-factor of 0 is the simulation which absolutely matches the observed 

data (Abbaspour, 2011). However, due to measurement errors and model uncertainties, the 

perfect simulation will generally not be achieved. The P-factor and R-factor is calculated using 

following equations (Abbaspour et al., 2007; Wu and Chen, 2014; Xue et al., 2014): 
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where, σx is the standard deviation of the observed variable x, 
xd  is the average thickness of the 

uncertainty band, l is a counter, k is the number of observed data points for variable x. 

 The percentage P of observed data bracketed by 95PPU band is derived by: 
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where, N is the total number of observed values, nqin is the number of the observed data 

bracketed by 95PPU. 

Sequential uncertainty fitting version 2 (SUFI-2)  

Based on Bayesian framework, SUFI-2 determines uncertainties through the sequential and 

fitting process, and it requires several iterations to achieve the final estimates. SUFI-2 starts by 

assuming a large parameter uncertainty to account for different possible sources (including 

model input, structure and parameter and measured data), so that the measured data will initially 

falls within 95PPU. And then, the uncertainty can be decreased by considering following two 

rules: 1) 95PPU band brackets most of the observations (larger P-factor) and 2) the average 

thickness of upper (at 97.5%) and lower level (at 2.5%) of 95PPU is small (smaller R-factor) 

(Abbaspour et al., 2007). Therefore, a balanced P-factor and R-factor is a desired result for an 

acceptable uncertainty analysis (Wu and Chen, 2014). 

Statistical downscaling model (SDSM) 

SDSM is an important statistical downscaling tool, and can be best described as a hybrid of the 

stochastic weather generator and transfer function method. During downscaling with SDSM, a 

multiple regression-based model can be developed between some selected large scale GCM 

predictor variables and local scale predictants (such as precipitation and temperature). The 

parameters of regression equation can be estimated by using the efficient dual simplex algorithm. 
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SDSM is able to construct climate change scenarios for small sites at daily time scale by using 

gird resolution of GCM outputs (Wilby and Dawson, 2007).  

There are six major types of emissions scenarios provided on Special Report on Emissions 

Scenarios (SRES), including the A1FI, A1B, A1T, A2, B1, and B2 scenarios (IPCC, 2007). 

Because A2 scenario predicted the greatest changes in temperature and precipitation by the end 

of this century, this scenario can be considered to represent the worst case scenario for 

hydrological studies (Gudmundsson, 2012; Samadi et al., 2012). Therefore, the Hadley Centre 

Coupled Model 3 model (HadCM3) for A2 scenario (which is named as H3A2a) was selected in 

this study for downscaling purposes, and SDSM is applied to downscale the GCM outputs. The 

downscaled GCM outputs will apply to the SWAT model and make corresponding assessment 

on surface runoff for the future projection. 

The case study 

 

Figure 1. The DEM and location of the study area (Wu and Chen, 2014). 

 

Figure 2. The subbasin of the study area. 

The upper reaches of the Wenjing River watershed located at Sichuan province in western China 

were selected as study area. The study area is about 25 km east to Chengdu, the capital city of 

Sichuan province, and the drainage area is 653 km
2
. Fig. 1 shows the DEM map and location of 

the study area. The annual mean temperature and sunshine duration are 15.9 °C and 1161.5 h, 
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respectively, and the average annual precipitation is 1012.4 mm. The annual amount of 

precipitation is high in summer (588.0 mm) and can be as low as 29.9 mm in winter (IWHR, 

2005). Since water scarcity and growing population problems become severe in China recently, 

as the main drinking water source for Chengdu and major water source for irrigation activities in 

the downstream area, the upper reaches of the Wenjing River watershed urgently require 

efficient water resource management. Due to this reason, this area was selected as the study area 

(Wu and Chen, 2014). This study can provide scientific supports for local water resource 

department and good reference for long term water management based on future predictions. 

Results and discussion 

Hydrological modeling 

Based on 10 groups of land uses and 16 types of soil, the study area was delineated into 61 sub-

watersheds, and the outlet is located in the southeast of the watershed. If the hydrological model 

performs poor simulation to match the observed data, then it may continue to perform poorly in 

the future climate scenarios (Hay et al., 2014). Therefore, a well-performed model is basic and 

essential requirement for conducting downscaling studies on hydrological modeling. Calibration 

and uncertainty analysis were conducted by using SUFI-2 with three iterations (1000 runs each 

iteration) in this study. The three-year surface runoff data from 1998 to 2000 were used for 

calibration, and the remaining two years (2001-2002) data were used for validation. The Nash-

Sutcliffe coefficient (NSE) and coefficient of determination (R
2
) were selected to evaluate the 

performance of simulation, and NSE was also selected as the objective function of SUFI-2. The 

definitions of NSE and R
2
 are shown below: 
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Where n is the total number of values within the period of analysis; Qo and Qs represent the 

observed and simulated surface runoff (m
3
/s); Qo,i and Qs,i are the observed and simulated values 

on day i; and 
oQ and 

i
Q are the average values of the observed and simulated surface runoff 

(m
3
/s), respectively. 

Based on sensivity analysis results and recommendation of the user manual, there are total 11 

parameters selected for calibration. After calibration, the NSE and R
2
 of the best simulation can 

reach to 0.77 and 0.80 for the calibration period (Fig. 3), and 0.74 and 0.87 for the validation 

period (Fig. 4), respectively. The P-factor and R-factor are 0.56 and 0.48, respectively, indicating 

most of observed data are bracketed in a small band of 95PPU. The good performance model can 

provide enough confidence for applying the downscaled GCM results. In order to evaluate the 

propagation effect of uncertainties from downscaling to hydrological modeling, the parameter set 

which perform the best simulation was used as the default parameter setting. Therefore, the 



 

6 

 

uncertainties during hydrological modeling have been fixed and controlled. The propagation 

effect will only be evaluated from downscaling GCM outputs to hydrological modeling. 

 

Figure 3. The average monthly simulated runoff and observed runoff in the calibration period of 1998-2000 

 

Figure 4. The average monthly simulated runoff and observed runoff in the validation period of 2001-2002 

 

Figure 5. The hydrograph of observed, simulated runoff from SUFI-2, downscaled NCEP and H3A2a results for 

1998-2000. 
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Figure 6. The hydrograph of the observed and best simulated runoff with 95PPU from downscaled H3A2a results 

for 1998-2000. 

Precipitation is key component of hydrological cycle and more important and sensitivity to the 

surface runoff for hydrological studies (Tofiq and Guven, 2014). Because of the climate 

condition of the study area (no extremely cold days in winter), for this preliminary study, only 

precipitation data is downscaled using the statistical downscaling method. Normally, 

downscaling precipitation data is inevitably more problematic comparing to temperature. The 

reason is that the daily precipitation amounts at sites are normally poorly related to regional scale 

predictor variables, and precipitation is also a conditional process-- both the occurrence and 

amount processes must be specified when conducting downscaling (Wilby and Dawson, 2007). 

As the first step, the National Centers for Environmental Prediction (NECP) reanalysis data were 

applied first for calibrating the model. The 30 years (1981-2010) observed precipitation data 

were used as predictants for calibration. According to the coordinates of the study area, four 

H3A2a grid spots around study area (including 28X, 22Y; 28X, 23Y; 29X, 22Y and 29X, 23Y) 

were selected for screening the best NCEP predictor variables. After calibration, the screened 

NCEP predictor variables were used to downscale the H3A2a outputs. The downscaled 

precipitation results were treated as input of the hydrological model, and the simulated surface 

runoff was compared to the observed runoff data. To be noticed, the mean precipitation of 40 

NCEP ensembles (scenarios) generated by SDSM were used as the input of the hydrological 

model, because only the uncertainties from H3A2a to the hydrological model are the key 

concerns of this study; and all 40 H3A2a ensembles were reserved and used to conduct 

uncertainty analysis. 

As it is shown in Fig. 5, the hydrograph contains four surface runoff simulation series, which are 

observed runoff, simulated runoff by using observed precipitation, using mean downscaled 

NCEP data, and using downscaled H3A2a outputs with the best performance. The surface runoff 

simulation produced by observed precipitation can reach the highest NSE and R
2
 values, which 

are 0.77 and 0.8 respectively. The surface runoff generated by using downscaled H3A2a 

precipitation (with NSE and R
2
 values of 0.67 and 0.73, respectively) performs better than the 

simulations using the mean precipitation of NCEP ensembles (with NSE and R
2
 values of 0.6 

and 0.69, respectively). There are some underestimations during April to July each year when 

conducting simulation using observed data, but simulations from two downscaled GCM data 

perform better in these three months. However, the simulations from two downscaled GCMs 
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perform relatively poor for capturing the peak flow. Therefore, the corresponding uncertainties 

cannot be neglectable, and the 95PPU was calculated to improve the reliability of predictions. 

The 95PPU of the simulation from downscaled H3A2a are calculated at 2.5% and 97.5% levels 

of the cumulative distribution of downscaled precipitation for each month. Total of 40 ensembles 

were generated from SDSM and used for uncertainty analysis. The lower bound and upper bound 

of downscaled precipitation results were applied to the calibrated hydrological model, and the 

corresponding surface runoff simulations were provided above. In Fig. 6, the 95PPU can cover 

most of observed runoff data indicating a good coverage for extreme events. The details of 

statistic summary are provided in Table 1. Although the width of uncertainty range is relatively 

large (R-factor of 1.34), by considering the large coverage (P-factor = 0.67) the uncertainties 

have been controlled well for a downscaling study. The results have demonstrated that the 

downscaled H3A2a model results are well performed for prediction purposes, and can provide a 

reliable scientific reference for local water resource management. 

Table 1. The statistic summary of the results of three uncertainty analysis methods. 

Variable P-factor R-factor R
2
 NSE 

Third iteration SUFI-2 0.56 0.48 0.8 0.77 

Downscaled NCEP (mean) N/A N/A 0. 69 0.6 

Downscaled H3A2a 0.67 1.34 0.73 0.67 

Conclusions 

In this study, the hydrological modeling for the up reaches of the Wenjing River watershed was 

successfully conducted. SDSM was used to downscale the H3A2a model and generate future 

scenarios. The propagation effect of uncertainties from statistical downscaling to hydrological 

modeling was evaluated. The NSE and R
2

 of the best simulation by using downscaled H3A2a 

data are 0.67 and 0.73, respectively, indicating a good simulation performance. The P-factor and 

R-factor for uncertainty from downscaling are 0.67 and 1.34, respectively, also demonstrating an 

acceptable uncertainty analysis result for a downscaled study. Therefore, the downscaled H3A2a 

model is capable for future prediction with high confidence, and can provide a reliable scientific 

reference for long term evaluation and estimation of future water resource situation in the study 

area. 
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