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Abstract 

The efficiency of offshore oil spill response not only relies on an efficaciously global 

decision/planning in devices combination and allocation, but also depends on the timely control 

for response devices (e.g., skimmers and booms). However, few study has reported on such 

decision framework with timely integration of global planning and operation control to support 

the offshore oil spill recovery. This study developed an agent-based simulation-optimization 

coupling approach to provide sound decisions for devices combination and allocation for 

offshore oil spill recovery in a fast, dynamic and cost-efficient manner under uncertain 

conditions. At the same time, the approach aimed at providing operation control for specific 

devices, reflecting the site conditions, and correspondingly real-time adjusting the global 

planning, which was especially helpful to harsh environments prevailing in the Newfoundland 

offshore areas. In the case study, the developed approach was applied to determine the allocation 

of 3 response vessels from 7 different locations of the spilled oil slicks. The routes of the 

response vessels for response operation were optimized and reflected by the principle agent-

based programming. The modeling results indicated a minimal time of 21 hours for vessels 

allocation and recovery operation when only considered oil recovery, leading to an oil recovery 

rate of 90%. The proposed approach can timely and effectively support optimal allocation of 

devices and control of operation as well as real-time adjustment of global decision for oil 

recovery under dynamic conditions and improve recovery efficiency. 
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Introduction 

Offshore oil spill is a common type of coastal and marine pollution. It is defined as an accident 

release or discharge of petroleum hydrocarbons due to human operations natural disasters. 

Tankers, offshore platforms and drilling rigs, as well as subsea piping lines are among the most 

common sources of oil spills. Various types of hydrocarbon contaminants can be involved in an 

oil spill accident, including crude oil, refined oil products, heavier fuels, and waste oil, etc. (Jing 

et al., 2012; Li et al., 2012).  In history, oil spills have brought significant damages to the marine 

environment and local ecosystems. Two of the most predominant cases during the recent few 

decades are the Exxon Valdez Oil Spill in 1989 and the BP Deepwater Horizon Oil Spill in 2010. 

Given that specific situation vastly distinguished from each other, different strategies and 
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technologies were deployed during the clean-up processes. Both of the spills led to tremendous 

economic losses and durable social/environmental impacts, for which, the inefficient decision 

support systems during the emergency response were consistently blamed (Picou, 2009; Atlas 

and Hazen, 2011; Griggs, 2011; Gill et al., 2012).  

Accompanied by the booming of offshore oil production and transportation, particularly during 

the recent few decades, prompt response to oil spills has been realized as a critical issue. 

Growing research effort has been taken into developing an effective and efficient tool for oil spill 

emergency decision support systems. For example, Baruque et al. (2010) applied a Case-Based 

Reasoning (CBR) methodology in forecasting the presence and trajectory of oil slicks in open 

ocean areas by analyzing the previously solved problems, thus to shorten the time needed for 

decision makings.  In another study, Krohling and Campanharo (2011) combined  fuzzy theory 

with the concept Technology for Order Preference by Similarity to Ideal Solution (TOPSIS) in 

offshore oil spill decision makings, in which multi-scenarios can be simulated using different 

combat strategies to establish contingency plans based on the prioritized criteria. Meanwhile, 

Kokkonen et al. (2010) applied a mapping tool integrating both geological and ecological data 

for boom allocation under dynamic local sensitivities to potential oil spills, and have it tested 

under representative cases.  

In addition to simulating oil spill scenarios, optimizations need also be involved to provide 

decision support under various conditions when oil spills actually happen. Zhong and You (2011) 

developed a multi objective linear model for cleanup operational schedules and coastal 

protection plans during an oil spill event. Sheu et al. (2005) used a fuzzy clustering technique for 

optimizing resource allocation during disasters other than oil spills. Verma et al. (2013) 

formulated a two-stage stochastic programming to optimize the allocation of oil spill facilities 

for the southern coast of Newfoundland.  Besides, many studies also considered to integrate 

optimization with simulation, particularly under dynamic situations. For example, You and 

Leyffer (2011) took into account the time-dependent factors regarding oil properties, 

hydrodynamics, and weather conditions while optimizing the response plans. Li et al. (2014) 

introduced uncertainties into the decision making processes during oil spills, by developing a 

Monte Carlo based dynamic mixed integer nonlinear programming for devices allocation 

optimization.   

Despite that dynamic conditions have been considered within previous studies, harsh 

environment makes emergency response to oil spills even more challenging by changing the fate 

and properties of oil dramatically within short period of time, which will inevitably impede the 

recovery and cleanup processes unless timely updates of operational schedules are made 

(Brandvik et al., 2006; Bjerkemo, 2011). Few studies up to date have been carried out 

specifically to address this issue. Therefore, a real-time decision support systems taking into 

account of restrictions of devices and logistical efficiency is urgently desired.  

To fill this gap, agent-based modeling (ABM) is hereby proposed to render a certain degree of 

autonomous characteristic to the system, thus to achieve a better simulation of the process and 

make the optimization of the operational schedule more practical.  The study aims at developing 

an agent-based model, which couples both simulation and optimization under a dynamic 

condition, to provide a real-time decision support regarding devices allocation and operation 

control for a hypothetical oil spill case. The outcomes of the study is expected to be capable of 

facilitating a more effective and efficient tool for emergency oil spill response under highly 

dynamical conditions. 
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Agent-based simulation-optimization (ASO) 

Simulation-based dynamic mixed integer nonlinear programming (DMINP) 

Consider a linear program as follows: 

jj XCfMin            (1a) 

s.t.

    





n

j

ijij miBXA
1

,,1, 
         

(1b) 

0jX
            

(1c) 

where   n
RC




1
 is the matrix of coefficients of the objective function; and   nm

ij RA


  as well 

as   1


m

i RB are matrices of variable constraint coefficients.  

When Cj are not just constants but also functions linking with some other parameters with a 

relation of )(yg j , the Equation 1 will be a simple linear model and can be solved by linear 

programming if )(yg j  
is independent from the decision variables (Xj). However, when )(yg j  

are 

dependent on the decision variables, the model becomes non-linear. Especially when )(yg j  are 

dynamically relating with the decision variables (usually with time series), the model becomes 

dynamic and non-linear, and cannot be easily solved. It will be more convenient to break the 

time series into certain stages based on a controllable time interval, leading to a simulation-based 

dynamic mixed integer nonlinear programming (DMINP) as follows: 
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where ts is the time interval in the stage s. In some cases, )(yg j  
in the same stage can be assumed 

to be unchanged and the Equation 2 can be correspondingly converted to: 
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Oil recovery simulation  

In offshore oil spill recovery, the net oil recovery rate (ORRn, defined as the amount of recovered 

oil per hour) of skimmer is usually determined by slick thickness (ST). The function between 

ORRn and ST are as follows: 

STbSTaORRn  2

         
(4) 

where a and b are empirical coefficients obtained from experimental tests. Correspondingly, the 

objective function of the offshore oil spill recovery problem by skimmer can be expressed as 

follows: 

dtORRSKVMax
t

nii 
0          (5) 

where V is the volume of recovered oil, t is the operational time, SKi are the numbers of skimmer 

type i, and ORRni are the recovery rates of the corresponding skimmer.  

As ORRni are dynamically related with the objective value (V), the problem becomes dynamic 

and non-linear, and cannot be easily solved. It will be more convenient to break the time series 

into multiple stages based on a controllable time interval defined as the minimal time required 

for shifting one operational condition to another. The duration of a stage is usually determined by 

the time for device deployment and allocation, resource arrangement, etc. This leads to a 

multiple-stage simulation based nonlinear programming as follows: 
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where N is the length of an operational period, s is the number of operational stages, ORRnis are 

net oil recovery rates for SKi at stage s, which is calculated by the slick thickness or the collected 

oil from the stage s-1: 
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where V0 is the initial volume of spilled oil, A is the area, and h is the  stage index. 

 

Agent-based model for device interaction and agent-based simulation-optimization coupling 

In offshore oil spill response, strong interactions exist in the response devices (e.g., vessels, 

recovery devices, storage barge), responders, decision makers, etc. These interactions 

dynamically occur during the whole process of an offshore oil spill response. It may lead to 

unreliability or compromise of the response actions if these interactions are not considered in the 

global optimization. In order to facilitate the reflection of these interactions, an agent-based 

model is introduced.  
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According to Wooldridge and Jennings (1995), an agent can be defined as “a software or 

hardware entity that is situated in some environment, and is capable of performing autonomous 

actions in that environment in order to meet its design objectives”. As shown in Figure 1, an 

agent usually contains some basic properties as follows: (1) able to survive and response to the 

environment; (2) able to dynamically receive the information from the local environment; (3) 

driven by certain goals or purposes; and (4) has certain intrinsic behaviours reacting with the 

environments and other agents (Liu, 2001). Thus, an agent can be characterized by its autonomy, 

social ability, reactive and protective behaviour. The autonomy can allow an agent independently 

completing any complex tasks. The social ability can drive an agent to interact and negotiate 

with the other agents to achieve its task, and the system goal can be achieved based on the 

interaction and negotiation from all agents. The reactive behaviour of an agent can help 

dynamically perceive and respond to the changing environment, while the proactive behaviour 

can make an agent dynamically change its behaviour according to the change of environment to 

achieve its goal. Some other properties of agents include mobility, temporal continuity, 

collaborative behavior, etc. (Liu et al., 2003). 

Agent 1

(Behavioral 

specification 1)

Agent 1

(Behavioral 

specification 1)

Agent 2

(Behavioral 

specification 2)

Agent 2

(Behavioral 

specification 2)

Agent k

(Behavioral 

specification k)

Agent k

(Behavioral 

specification k)

...

Environment

Perception

Perception

Perception

Actions

Interaction

Interaction

Interaction

 

Figure 1. Basic structure of an agent-based model. 

This agent model can be embedded in the DMINP approach as simulative constraints to reflect 

the dynamic interactions of devices (e.g., ship mount devices) during offshore oil spill response, 

leading to an agent-based simulation-optimization coupling (ASO) approach. This approach can 

utilize the global objectives as the goals for agents and dynamically adjust the plan settings 

according to the agent-based modeling. 

Case study 

Background  

Consider an offshore spill of Statfjord oil with a total amount of 1,000 m
3
. Due to advection and 

spreading, the spilled oil was separated to 7 slicks within a 70 km * 30 km area. The volumes 

and location of these oil slicks are shown in Table 1. The initial thickness of each slick is 50 mm. 
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Table 1. Locations and volumes of oil slicks. 

Slick 
Location Oil volume 

(m
3
) X (km) Y (km) 

1 24.03 10.03 132.44 

2 5.80 18.46 219.37 

3 19.97 20.99 146.69 

4 14.07 3.43 137.82 

5 27.49 5.42 81.07 

6 16.61 29.39 79.86 

7 3.27 13.84 202.76 

Three ships (Ship A, Ship B, and Ship C) with three types of ship mounted skimmers were 

applied in this area to collect the spilled oil. Each ship was located in a different harbor and 

required a specific period of time for allocation.  

 

Oil spill skimming 

In order to determine their efficiencies, ORRs and OREs of these skimmers were collected from 

the previous tests conducted by Environmental Canada and OHMSETT (Schulze, 1998). 

According to the collected information, a series of ORRn1, ORRn2 and ORRn3 were generated 

based on calculating ORRs * OREs using different oil thickness with a viscosity of 1,000 cSt 

(Schulze, 1998). Fittings were then applied based on quadratic functions to generate the 

regression models of ORRn with the change of spilled oil thickness, representing the recovery 

efficiencies of the three types of skimmers. Such change of slick thickness is usually caused by 

the processes of spreading, shifting, weathering (e.g., evaporation, dispersion, dissolution, 

emulsification, etc.), as well as oil recovery. The details about the ORRn of the skimmers as well 

as the regression models of the efficiencies are shown in Table 2. 

Table 2. Time of devices allocation as well as model parameters of ORRn (Li et al., 2012, 2014). 

Types of skimmers 
Model parameter for ORRn 

a b 

SK1 (Ship A) 0.01437 0.01602 

SK2 (Ship B) -0.00791 0.84975 

SK3 (Ship C) -0.01591 1.54975 

Due to the challenge of transportation, no more skimmers and vessels can be supplied at this 

stage. The objective of the response in the current stage is to determine the allocations (routes) of 

ships to achieve 90% of oil recovery with a minimum time window. According the above 

information and the algorithms of DMINP and ASO, a global optimization model can be 

generated as follows: 

TMin             (12a) 

s.t. 
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where T is the time window of operation (hour); t is the indicator of stage; TV is the recovered oil 

in each stage (m
3
); and ft (Agenti, STtk) is the function of the agent-based modeling at stage t; STtk 

is the slick thickness of each slick k at stage t (mm); and Agent is the referring to each skimmer 

mounted ship. The development of the agent function is as follows: 

 

Results and discussion  

The modeling results indicated that, without consideration of weathering processes, the time 

window for achieving 90% of oil recovery was 21 hours based on the optimal routes of response 

vessels determined by the ASO modeling.  

The routes of three response vessels are indicated by Figure 2. The routes and schedules of 

vessels indicated that due the closest distances to two large slicks (Slicks 2 and 7) and stable 

relatively stable efficiency of oil recovery, Ship B with SK2 was mainly working on these two 

slicks. No interactions between Ship B and other two ships until the late stage (after the 15
th

 

hour). Furthermore, strong interactions were observed between Ships A and C. However, due to 

the long distance from Ship C to the slicks, it took 2.9 hours for Ship to reach the first slick for 

operation. No oil recovery was proceeded by this vessel at the first three hours and no interaction 

occur between Ships A and C. From 3
rd

 to 19
th

 hours, strong interactions happened between these 

two ships. Because the recovery efficiency of skimmer on Ship C (SK3) was high on and had less 

significant decrease than the one on Ship B (SK1), the allocation of the Ship A was always 

changed according to the allocation of Ship B. Since the distances were far from these two ships 

to Slicks 2 and 7, the interactions of Ships A and C happens on Slicks 1 and 3-6. Due to the 

significant decrease of recovery efficiency the Ship A stopped operation after 19
th

 hour. 

Interactions of all three ships happen after the 17
th

 hour. 

 

Figure 2. Optimal routes of response vessels based on ASO modeling. 

Figure 3 indicated the amount of oil recovered by each ship at each stage, while Figure 4 

indicated the cumulated amount of recovered oil. Although the recovery amounts were fluctuant 

during the whole operational period, the global trends of recovery were decreased along with 
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time. Because of strong interactions between Ships A and C, the fluctuation of oil recovered by 

this two ships were more significant than which by Ship B. Furthermore, controlled by the global 

objective, the overall oil recovery by all ships keep increasing until the ultimate goal was 

achieved. 

In order to demonstrate the advantages of the ASO approach, a comparison was made between 

the ASO and shortest distance optimizations in offshore oil spill recovery. In the shortest 

distance modeling, the allocations of ships were only driven by the short distance between each 

ship and each oil slick. The ships left the slicks until 90% of oil recovery was achieve on each 

slick. The comparison result is illustrated on Figure 5. At the early stage (1
st
 to 5

th
), the oil 

recovery efficiencies based on the two approaches were almost the same. Since the 5
th

 stage, the 

recovery efficiency based on the shortest distance approach became lower than the one based on 

the ASO. Furthermore, this inferiority became significant along with time. To achieve 90% of oil 

recovery, the settings from the shortest distance required 23 hours while the settings from ASO 

only required 21 hours.  
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Figure 3. Oil recovery by each ship at each stage. 
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Figure 4. Cumulated oil recovery by each ship.  
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Figure 5. Comparison of oil recovery by ship routes determined by ASO and shortest distance. 

 

Conclusions 

An agent-based simulation-optimization (ASO) coupling approach has been developed to 

support oil recovery and devices allocation during offshore oil spill responses, providing sound 

decisions for oil recovery in a fast and dynamic manner. The ASO approach was developed 

based on the integration of a global optimization approach, Simulation-based dynamic mixed 

integer nonlinear programming (DMINP), and an Agent-based model (ABM) for reflecting 

devices interactions. The MC-DMINP approach converted the simulation model into constraints 

which dynamically linked to the decision variables, and broke the time series into certain stages 

according to controllable time intervals in practical manner, leading to a multiple stages dynamic 

programming. The ABM can reflect the interactions of components in offshore oil spill recovery 

system and integrate with the global optimization. Therefore, The ASO approach can provide 

sound decisions for oil recovery under highly interactive conditions and improve recovery 

efficiencies 

In the case study, the developed approach was applied to determine the allocation of 3 response 

vessels from 7 different locations spilled oil slicks. The modeling results indicated that the 

optimal routes of vessels could lead to a minimum operational time window of 21 hours to 

achieve 90% of oil recovery, which was improved from the traditional method based on shortest 

distance (23 hour). This demonstrates the advance of the ASO. The proposed approach can 

timely and effectively support optimal allocation of devices and control of operation under 

dynamic conditions and improve recovery efficiency. 

Although a case study of supporting the oil recovery by skimming is provided in this paper, the 

ASO approach can globally and dynamically support the whole process of oil recovery oil, 

including the devices allocation, deployment, and operation of containment, skimming, 

surfactant utilization, in-situ burning, etc. 

In future study, hydrodynamic simulation and weathering processes will be considered to further 

test the feasibility and capability of the developed ASO. Future research efforts may also include 

the consideration of possibilistic uncertainties for incorporating expert knowledge into the 
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decision making process of offshore oil spill responses. Testing of the developed method through 

real-world applications is undergoing with the collaboration with local oil spill responders.  
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