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Abstract 

This study aimed to investigate optimal multiple reservoir operations and water demand 

management considering climate change impact. In this study, conditional density estimation 

network creation and evaluation (CaDENCE) method was used for downscaling precipitation, 

and support vector machine (SVM) was used for downscaling temperature. The Bayesian neural 

network (BNN) model was applied to simulate the monthly reservoir inflows, which was used as 

the input to the optimization model. A multi-reservoir system was used for methodology 

demonstration, where three reservoirs were delivering water to an urban area. Several water-

saving measures including long-term and short-term measures were involved in the optimization 

model to mitigate water shortage problem. The model aimed to maximize the total revenue 

obtained from water release of three reservoirs subject to constraints of available water supply, 

demand of water users, and cost of water demand management. The optimal water release 

schemes and adoption of water-saving measures under current and future climate-change 

conditions were obtained. The results showed that the water releases would increase at spring 

and decrease at winter under HadCM3 A2 emission scenario compared to the current condition. 
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Introduction 

Climate change impact on water resources has been recognized as a serious concern for many 

countries. A warmer climate could potentially influence the regional precipitation pattern and 

river runoffs, and make current water management systems less effective as expected (Milly et 

al., 2008). This is especially true for planning of reservoir operation, as it is significantly 

influenced by river inflows and water users, where both may subject to climate change impact. In 

recent years, various researchers made a lot of efforts in investigating the potential effect of 

climate change on water resources management. For examples, Eum and Simonovic (2010) 

studied the optimal reservoir operation considering the potential impact of climate change by 

using an integrated water resources management model; Islam and Gan (2014) assessed the 

future outlook of water resource management of the South Saskatchewan River Basin of Alberta 

under climate change. However, there are relatively limited studies on the coupling of climate 

change study and optimization of a water supply-demand system. Therefore, the objective of this 

study is to advance a water supply-demand management model and apply it to a study case in 

Canada. With the aid of downscaling tools, the change of rainfall patterns under future 

conditions will be reflected in the variations of river flows, and then the projected flow 

conditions will be used as important parameters to be embedded in the water management model. 
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Study Area 

The studied water supply-demand system is adapted from a real-world case (Greater Vancouver 

Regional District, GVRD) located in the south part of the Georgia Basin, Canada. The area 

currently has a population over 2 million, receiving water supplies from Capilano, Seymour, and 

Coquitlam reservoirs (as shown in Figure 1) (Huang et al., 2006). A variety of hydrological 

factors are affecting the reservoir inflows, including precipitation, snowpack and temperature 

(BC Hydro, 2005). Due to population growth, the water supply systems in the GVRD under 

future climate change conditions may not be able to meet the demands. Adaptation strategies that 

emphasize on utilizing existing resources more efficiently are important for better supply and 

demand management. In this study, several long-term and short-term water-saving measures are 

considered. The short-term ones include replacement of water-saving facilities and installation of 

outdoor water-saving kits; the long-term measures include education, metering, and leak 

detection (as shown in Table 1). The related cost and efficiency of each water-saving measure 

are mainly referred to BC Ministry of Community & Rural Development (2009). 

 

 
 

Figure 1. Map of study area (adapted from Google Map). 
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Table 1. Unit costs and efficiencies of long-term and short-term conservation measures 

Long-term 

Measures 

Unit cost  

(CAD $/m3) 

Efficiency  

(%) 

Short-term Measures Unit cost  

(CAD $/m3) 

Efficiency  

(%) 

Education 1.06 20% 

Showers 2.38 3% 

Toilet  1.85 10% 

Faucet 1.44 3% 

Metering 0.68 20% 

Laundry 12.97 2.5% 

Dishwasher 14.61 0.15% 

Outdoor water kits 0.058 9.5% 

Leakage 

detection 
1.27 10% 

Sprinkling bylaw 0.031 3% 

Rainbarrel program 1.42 8% 

Source: BC Ministry of Community & Rural Development (2009) 

 

Model Formulation 

The water supply-demand model can be formulated as follows: 
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where i, t, k, and s are index of reservoirs, months, long-term measures, and short-term measures, 

respectively; BR, BI, and BC are revenues per unit water consumption from residential region, 

industry, and commerce, respectively; WRt, WIt, and WCt are water distributed to residential 

region, industry, and commerce, respectively; STit is final storage of reservoir i at month t; Qit = 

reservoir inflow of reservoir i at month t (Mm3); Xit = water release from reservoir i at month t 

(Mm3); Eit is monthly water volume released for fishery use; δt is water deficit amount (Mm3); 
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DMt is minimum water demand amount of each month t; η1k and η2s are efficiency of long-term 

water-saving measure k and short-term measure s, respectively; LCk and SCs are unit cost of 

long-term measure k and short-term measure s, respectively; BGT is allowed budget for water-

saving measures; Y1k is binary variable, where Y1k = 1 if long-term measures are adopted; Y1k = 0 

if otherwise; Y2st = binary variable, where Y2st = 1 if short-term measures are adopted; Yjst = 0 if 

otherwise. 

 

Climate Change Impact Assessment 

Figure 2 shows the flow chart of the procedures to conduct a climate-change impact assessment. 

Firstly, statistical downscaling is carried out to obtain future weather conditions (i.e. rainfall and 

temperature). The Conditional Density Estimation Network Creation and Evaluation (CaDENCE) 

method is used for monthly precipitation downscaling (Cannon, 2012). The predictor selection is 

based on the Spearman correlation coefficient between monthly precipitation and large scale 

predictors. In this study, 20 ensembles are used for projecting future conditions. Then, the 

monthly temperature downscaling is carried out using support vector machine (SVM) (Tripathi 

et al., 2006), which is conditioned upon precipitation. NCEP reanalysis data (i.e. 1997-2003) 

(Kalnay et al., 1996) is applied for calibrating the downscaling models and the HadCM3 A2  

scenario (Gordon et al., 2000; Pope et al., 2000) is used for generating climate scenarios for  

future periods 2011-2099. In this study, the Bayesian Neural Network (BNN) model is applied 

for the monthly flow data simulation. The observed weather (including precipitation, Tmin and 

Tmax at monthly scale) and hydrological data (i.e. monthly average runoff), with time period 

from 1997 to 2006, is used for training BNN model and then the downscaled climate data is used 

as inputs to the trained BNN model to generate runoffs under future conditions (2011-2099). 

More technical details of the assessment methodology can be referred to Lu et al. (2014). It is 

noted that we only select HadCM3 A2 scenario in this study for the methodology demonstration, 

other GCMs and scenarios could also be used by the proposed method. 

 

Large-scale predictors

SVM

Statistical downscaling of rainfall 

and temperature
Hydrologic simulation

Trained BNN model 

CaDENCE

 

 

Figure 2. Flow chart of methodology. 

 

Result Analysis 

The precipitation from downscaling showed that the precipitation would increase from March to 

August, and would decrease from November to February. For example, compared to current 

condition the average precipitation of April at Capilano reservoir during period 1 to 3 would 

increase by 23.6%, 28.2, and 11.9%, respectively, and at November would decrease by 20.1%, 

26.5%, and 27.8%, respectively. The result also showed the temperature would increase in the 

spring under future condition. For example the Tmax of February at Capilano reservoir would 
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increase by 17% to 24%, and the Tmin of February would also increase by 10.2% to 58.4% in 

the next three periods. Based on the inflow results simulated by hydrological model, the average 

inflow amount would increase from February to July, but decrease from August to January. For 

example, compared to current inflow, the average inflow of Capilano reservoir at March during 

period 1 to 3 would increase by 64.9%, 56.8%, and 71.4% respectively, and in October would 

decrease by 46.7%, 53.7%, and 33.9%, respectively. This is because the precipitation would 

increase in spring and decrease in winter. The increase of temperature during spring would also 

cause snow smelt in spring and lead to increase in inflow. 
 

 

Figure 3. Water release of each reservoir under A2 Scenario during different periods. 
 

Figure 3 shows the water release of each reservoir under A2 emission scenario during periods of 

2011-2040, 2041-2070, and 2071-2099, based on the solutions from 20 ensembles. It is found 

that, under the current condition, the water release from Capilano reservoir is generally higher 

than that of other reservoirs. It may because the inflow of Capilano reservoir is the highest. It 

also shows that the Coquitlam reservoir would release more water during July and August which 

is the most drought period. The comparison of the water release between current and future 

conditions shows that the water releases are still low during summer period (July to September); 

the water release amount would increase during spring (from February to April), but decrease 

during winter (October to December). For example, the median value of water release from 

Capilano reservoir at February during periods 1, 2 and 3 would increase by 32.2%, 31.6%, and 

40.9% compared to that under current condition, respectively. The median value of water release 

from Capilano reservoir in December during periods 1, 2 and 3 would decrease by 20.6%, 59.1%, 

and 64.7%, compared to that under current condition, respectively. This may because, under A2 
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scenario, there could be a higher rate of snowmelt from spring to early summer and higher 

precipitation, and thus a higher increase of inflow during this period. However, the inflow during 

late summer and early winter could decrease. Generally, the results show that the shortage 

problem may extend to winter under the projected future condition. 

Table 2 lists the probabilities of adopting short-term measures during different periods. The 

probability is calculated based on the frequency of occurrence of the measures in 20 groups of 

solutions. The short-term measures would only have probability to be adopted during July to 

January under future condition; while under current condition the short-term measures would not 

be adopted (i.e. the value of Y2st under current condition are zero), which indicate that the 

shortage would be more serious during summer and winter under future condition. It is also 

found that the shortage period is the longest during period 1, which is from July to January. 

Moreover, it shows that the probability of the adoption would be influenced by the cost and 

efficiency of the measures. For example, it is found that during period 1 at July, the probability 

of displacing laundry and dishwasher is 0.15 and 0.25, respectively, which is less than other 

measures. This may because of the high cost and low efficiency of these measures. For long-term 

measures, the probabilities of adopting education, metering, and leakage detection would be (i) 0, 

0.1, and 0.1 for current period, (ii) 0.4, 0.15, and 0.2 for period 1, (iii) 0.25, 0.3, and 0.05 for 

period 2, and (iv) 0.4, 0.3, and 0.05 for period 3. It is indicated that the probability would 

increase in the future compared to that under current condition due to the serious shortage caused 

by climate change. The adoption of leakage detection would have relatively low probability 

during periods 2 and 3 (i.e. 0.05), which is due to its higher cost and lower efficiency.  

 
Table 2. The probabilities of adopting short-term measures during different periods 

Period Measures JUL AUG SEP OCT NOV DEC JAN 

2011-2040 

Showers 0.25 0.3 0.2 0.3 0.25 0.15 0.2 

Toilet  0.3 0.15 0.25 0.35 0.3 0.15 0.1 

Faucet 0.4 0.3 0.35 0.4 0.35 0.25 0.1 

Laundry 0.15 0.15 0.05 0.2 0.15 0 0 

Dishwasher 0.25 0.2 0.1 0.25 0.15 0.15 0 

Outdoor water kits 0.3 0.45 0.45 0.45 0.25 0.5 0.2 

Sprinkling bylaw 0.45 0.35 0.3 0.5 0.2 0.55 0.25 

Rainbarrel program 0.4 0.25 0.2 0.3 0.2 0.15 0.05 

2041-2070 

Showers 0.35 0.6 0.4 0.55 0.5 0.3 0 

Toilet  0.2 0.1 0.2 0.5 0.3 0.35 0 

Faucet 0.4 0.2 0.45 0.45 0.4 0.5 0 

Laundry 0.3 0.2 0.1 0.1 0.25 0.15 0 

Dishwasher 0.1 0.3 0.2 0.2 0.3 0.25 0 

Outdoor water kits 0.25 0.4 0.4 0.5 0.65 0.75 0 

Sprinkling bylaw 0.35 0.4 0.45 0.35 0.6 0.7 0 

Rainbarrel program 0.35 0.25 0.45 0.4 0.45 0.5 0 

2071-2099 

Showers 0.1 0.4 0.25 0.4 0.4 0.05 0 

Toilet  0.1 0.15 0.3 0.4 0.45 0.25 0 

Faucet 0.25 0.4 0.4 0.75 0.6 0.4 0 

Laundry 0 0.2 0.25 0.05 0.05 0.1 0 

Dishwasher 0.05 0.2 0.2 0 0.3 0 0 

Outdoor water kits 0 0.5 0.45 0.55 0.7 0.55 0 
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Sprinkling bylaw 0.05 0.55 0.4 0.65 0.55 0.4 0 

Rainbarrel program 0.05 0.3 0.2 0.45 0.65 0.15 0 

 

Conclusions 

A water supply-demand model was proposed and applied to a multi-reservoir system for seeking 

optimal water release strategy and demand management options. The climate change impact on 

water supply-demand management was also considered. CaDENCE was used for precipitation 

downscaling, and SVM was used for temperature downscaling. BNN model was applied to 

simulate the monthly inflows of three reservoirs under future climate change condition. The 

monthly inflow data was used as the input to the optimization model. The results showed that, 

under future condition (i.e. HadCM3 A2 emission scenario), the water releases would increase at 

spring and decrease at winter in comparison to those at the current condition.  
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