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With this empirical exercise I have a dual focus: first, my goal is to 
discover a rule for getting square roots. But I go about solving this 
problem with a ‘methodological interest in the procedure.’ My questions, 
insights, efforts to understand, judge, and know are my data as I struggle 
to reach toward the second and primary goal: to discover the dynamics 
of my own wonder. So as I puzzled over the square root problem I also 
made a few very difficult first steps in tackling a much more complex 
puzzle, my wonder and its operations in me.  

The exercise is a modification of a similar problem presented in 
Chapter Three of Wealth of Self and Wealth of Nations. As McShane 
notes, many of us are familiar with techniques or rules, for example, to 
find square roots. Such techniques are sometimes taught in school and 
may be easily memorized. “You can use the rule with ease. But our 
crucial question is, do you understand the rule, the Why of it?”1 I have 
found that the only way to come to grips with this gap between 
memorization and understanding is through empirical investigations into 
my own experience, by puzzling, and by puzzling about my puzzling. 
This essay is intended to document my own first steps into this odd zone 
in the hope that it may be of some help to others who wish to make a 
similar effort.  

I have divided the paper into three sections. The first two sections 
correspond to two distinct modes of wonder, which I was able to identify 
in the process of completing the exercise. They are named What-ing and 
Is-ing for the types of questions that arose as I worked towards a 
solution. In the third section I summarize my results.  
 
1. What-ing 
 
With the first sight of my puzzle came a spontaneous question: What is 
the rule for getting square roots? This what-question was an expression 
of my desire to understand, and this desire, together with the seen 

                                                
1 Philip McShane, Wealth of Self and Wealth of Nations: Self-Axis of the Great Ascent 
(Washington D.C.: University Press of America, 1975), 19. 



Allerton: Empirical Exercise 6 

puzzle, created a kind of inner tension that drove me in my search for an 
answer. My immediate thought was to try working with an example. I 
chose a number, which I knew was a perfect square: how could I find the 
square root of 83,521? As I looked at the problem, a solution seemed 
very remote indeed. I did not know how to approach it, so I simply 
began trying out different possibilities that came to me as I looked. 
These possibilities seemed to arise partly as a result of my prior 
knowledge and experience.  

Part of this prior knowledge included some basic algebra, as well as 
an understanding of the meaning of square root. I understood that when 
looking for the square root of X, one is looking for the number which, 
when multiplied by itself, equals X. So, when presented with the 
problem, ‘find the square root of 83,521,’ I knew I was looking for a 
number, R, such that R•R = 83,521. I also had a basic understanding of 
the base 10 numeral system. I understood that, for example, 275 means 
two sets of 102 plus seven sets of 101 plus five sets of 100, where 100 = 1.  

Having this background understanding, and the tension of my what-
wonder driving me, I somehow suddenly came up with an idea: maybe 
writing the number 83,521 explicitly in powers of 10 will help. I 
modified my image as follows: 

 
83,521 = 8•104 + 3•103 + 5•102 + 2•101 + 1 

 
With the sight of this new arrangement of data I was able to make 
another leap. I saw that the highest power of ten in the square (83,521) 
was four, and I knew that the square root must multiply by itself to give 
that highest power. Since 102•102 = 104, the highest power of ten in the 
square root must be two. Maybe it would also help to write the square 
root, R, explicitly in powers of 10, with two being the highest power. I 
did:  
 

R = x•102 + y•101 + z•1 
 
Now, to my surprise, instead of looking for one variable, R, I was 
looking for three variables, x, y, and z, where x, y, and z are whole 
numbers from 0 to 9. With this new data I was able to modify my image 
again. I was looking for R such that R•R = 83,521, but now I could 
replace R with the expression above to get:  
 

83,521 = (x•102 + y•10 + z)(x•102 + y•10 + z) 
 
By expanding I arrived at:  
 

83,521 = x2104 + 2xy103 + y2102 + 2xz102 + 2yz10 + z2 

 
At this point, the next step was not immediately obvious to me. 

How could I use this equation to find the unknown variables, x, y, and z? 
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I was helped again by some prior mathematical experience I had with 
finding two or three unknowns. I knew that sometimes, if it is possible to 
find one variable, then that number can be used to find the next variable, 
and so on. I had an idea: perhaps I could find the variables in this way if 
I could rewrite the above equation such that the first term contained only 
one variable, x, the second term contained x and y, and the third term 
contain all three variables. The resulting equation would be loosely of 
the form:  

 
83,521 = {x}, {x, y}, {x, y, z} 

 
After a fair bit of messing with algebra I eventually arrived at the 
following:  
 

83,521 = x2•104 + (2x•10 + y) y•102 + (2x•102 + 2y•10 + z) z 
 
If my idea was correct, then my next task was to use this equation, 

somehow, to find x. How could I do this? In what way could I find x 
without knowing y and z? I considered the data that I had so far. I knew 
that:  

 
83,521 = x2•104 + (2x•10 + y) y•102 + (2x•102 + 2y•10 + z) z 
R = x•102 + y•101 + z•1 

 
Looking at the above two equations, I recalled that the first term of the 
first equation is the square of the first term of the second equation, that 
is, (x•102)2 = x2•104. I also noticed that x•102 is the largest component of 
the square root, assuming x is not equal to zero. Would x2•104 be the 
largest component of the square, 83,521? Suddenly I had an idea: maybe 
x is the largest number such that x2•104 is less than or equal to 83,521. If 
this was correct, what would x be? I tried some possibilities:  
 

22•104 = 40,000 
32•104 = 90,000 

 
I could see that 2 was the largest possible x such that x2•104 remained 
less than 83,521. At this point, x = 2 was the best candidate.  
 

Now how could I find y? Assuming for now that 2 was the correct 
value of x, I modified my image in the following way:  

 
83,521 = 40,000 + (2x•10 + y) y•102 + (2x•102 + 2y•10 + z) z 
43,521 = (2x•10 + y) y•102 + (2x•102 + 2y•10 + z) z 

 
With this new data in sight, my previous idea still in mind, and my what-
wonder driving me, I suddenly had another insight! My own Aha! I had 
made a connection, a leap, and with it the tension of inquiry was relieved 
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and replaced with excitement. “I think I’ve discovered the answer!” 
Then spontaneously I began ‘pulling together’ the relevant data, the 
clues, and my possible what-answer to formulate my own clearly 
understood solution to the puzzle: I could find the remaining variables in 
the same way I found x, by finding the largest number such that each 
successive term in the equation was less than or equal to the total, and 
then subtracting that term from the total. Then, once x, y, and z were 
known, I would have R = x•102 + y•101 + z•1, the square root of 83,521.  
 

My formulation of this procedure was a personal inner achievement, 
a new understanding which I could express in the words written above, 
or alternatively, as the following algorithm.  
 

To find the square root, R, of 83,521: 
 

- find largest x such that x2•104 ≤ 83,521  
- subtract x2•104 from 83,521 (= 43,521) 
- find largest y such that (2x•10 + y) y•102 ≤ 43,521 
- subtract (2x•10 + y) y•102 from 43,521 
- find largest z such that (2x•102 + 2y•10 + z) z ≤ remainder 
- then R = x•102 + y•10 + z•1 

 
One thing to notice about this expression of my formulation, this 
formula, is that it could be easily memorized. But would that 
memorization be anything like my understanding? As I am beginning to 
appreciate, memorizing the formula could in no way replace my activity 
of asking questions, getting insights, and formulating my own clearly 
understood solution.  
 
2. Is-ing 
 
At this point a very spontaneous shift occurred in my wonder. No longer 
was the solution remote; I had an idea, now I found myself asking: Is it 
correct? The shift was in the aim of my question. This was not a desire 
for understanding as my what-wonder had been; it was a desire for a 
correct affirmation of my idea. I was looking to make a judgment – to be 
able to assert ‘yes, my formulation is correct.’  

I found myself spontaneously looking back to the data, but now I 
was not groping in the dark as I had been in my what-ing. I knew what I 
was looking for, the looking was intelligent. I was testing my 
formulation, ‘weighing it against the data’ as I used it to solve for y = 8, 
and z = 9. Now I had R = 289. I asked ‘does 289•289 equal 83,521?’ I 
wrote out the multiplication, solving 289•289 = 83,521, and by the time I 
had finished I had grasped: yes, my formulation allows me to find R such 
that R•R = 83,521.  

Now I had reached a second insight, my is-insight. “It works! I’ve 
got it!” This was a reflective event; it occurred only after having looked 
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back to the data with my what-formulation in mind so that I could test it 
out and arrive at an answer to my is-question. So this involved three 
levels of consciousness: sensing, what-ing, and is-ing.  

From this insight came another shift. Now I could ask myself “is my 
formulation correct?” and answer “yes, I am confident that I have 
discovered the correct procedure.” I had made a judgment of fact, and I 
felt a joy of knowing the answer, of coming to know the answer myself; 
being able to make a judgment of fact was my own personal inner 
achievement.  

I now had a procedure for getting the square root of 83,521, but I 
realized that I was not finished yet. I knew that my procedure worked in 
this one case, but would it always work? Was it indeed a rule? I was 
asking another is-question: Is this procedure for getting the square root 
of 83,521 a rule that will work for getting the square root of any square? 
Again, I was seeking a correct affirmation of my idea. And again, in 
order to answer ‘yes’ or ‘no’ in response to my is-question I found 
myself spontaneously turning back to the data, not groping in the dark 
but looking intelligently. I knew what I was looking for, for I had 
grasped that my procedure is probably a rule if it works in a few other 
cases.  

I immediately began testing my procedure with a new example. I 
picked another perfect square: 177,241. Could I use the algorithm from 
the end of Part 1 to find the square root of 177,241? I tried it out: first I 
needed to find the largest x such that x2•104 ≤ 177,241. I found x equal to 
four. Next I subtracted x2•104 from 177,241, using x = 4: 

 
177,241 - 42•104 = 177,241 - 160,000 = 17,241 

 
Then I needed to find the largest y such that (2x•10 + y) y•102 ≤ 

17,241. Substituting four for x I had: (80 + y) y•102 ≤ 17,241. By trial 
and error I arrived at y equal to two. Next I subtracted (2x•10 + y) y•102 

from 17,241, using x = 4, y = 2: 
 

17,241 - (2•4•10 + 2) 2•102 = 17,241 - 16,400 = 841 
 

Finally, I needed to find the largest z such that (2x•102 + 2y•10 + z) 
z ≤ 841. Substituting four for x and two for y I had (840 + z) z ≤ 841. I 
could see that z was equal to one. I had arrived at the square root: 421. It 
worked!  

What about larger numbers? Without working through an example I 
could see that my algorithm would not work for numbers whose square 
root was greater than or equal to one thousand. Because I arrived at the 
algorithm by starting with R = x•102 + y•10 + z, where x, y, and z were 
whole numbers from 0 to 9, the largest possible R that could be found 
using my algorithm was 999. However, it seemed likely that I could 
easily come up with a new algorithm to deal with larger numbers by 
following the same method as in Part 1, that is, beginning with the 
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square root, e.g. R = w•103 + x•102 + y•10 + z, multiplying out and 
messing a bit with algebra.  

By this point I very spontaneously reached another insight: “This is 
it! I’ve got it!” And this reflective grasp, my is-insight, propelled another 
shift in me. I now had sufficient evidence to judge: my procedure 
probably works as a rule to find the square root of any number, S, which 
is a perfect square and can be written in the form:  

  
S = a•104 + b•103 + c•102 + d•10 + e 

 
where a, b, c, d, and e are whole numbers from 0 to 9. In order to make a 
stronger judgment I would need to do a mathematical proof. However, 
that effort would go beyond the aim of this exercise in which my interest 
is primarily methodological.  

 
3. Conclusion 
 
With these observations I can establish that the events I noticed going on 
in me as I puzzled away are consistent with the Dynamics of Knowing 
identified by Bernard Lonergan, and presented in the diagram from 
“Appendix A” of Phenomenology and Logic.2 These basic dynamics 
seemed to be a spontaneous and natural presence in me as I worked 
toward a solution. There was my wonder that I could express in the 
question: ‘What is the rule?’ and through puzzling there occurred a 
sudden event-in-me, my what-insight; I had an idea that led to my 
formulation of a possible answer.  

With my is-questions that followed I asked: Is it correct? My 
question was an expression of my wonder as a desire for a correct 
affirmation of my idea and led to what can be called a reflective insight. 
The insight was reflective because it involved looking back to the data 
with an intelligent what-formulation in mind and an is-questioning. 
When it seemed to me that I had sufficient evidence, I moved to a 
judgment: yes, my formulation is probably correct.  

In my effort to approach this exercise with a dual focus, to attend to 
my own experiences of wonder as I solved the square root puzzle, I have 
begun to recognize my sensing of data, my what-ing, and my is-ing 
together as my very spontaneous and natural activities of knowing.  
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2 Bernard Lonergan, Phenomenology and Logic: The Boston College Lectures on 
Mathematical Logic and Existentialism, vol. 18, Collected Works of Bernard Lonergan, 
ed. Philip J. McShane (Toronto: University of Toronto Press, 2001), 319–323.  


