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Abstract 

The conservation and restoration of biodiversity in the marine environment is a crucial aspect of 

fishing and related activities. Human activities cause changes in fish population and deep 

transformation in the type and quality of the water. Fishing, restocking and pollution often bring 

to reduction and distribution changes of  indigenous fish species to the benefit of the diffusion of 

exotic species. In this context protection and management of water environments become a 

primary objective. Therefore it is necessary to implement initiatives for protecting and restoring 

the quality and integrity of native species. Any decision-making process must be based on a 

careful analysis of the collected data. In this paper we propose a parametric functional approach 

to study the biodiversity in marine environment. 
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Introduction 

Public water policy requires assessment of ecosystems species diversity, and monitoring to 

determine changes that can be used to predict population declines and loss of environmental 

resources (Burger et al., 2013). Animals, plants, micro-organisms and their complex interactions, 

in fact, react to human impacts in different ways, with some organisms responding more quickly 

and definitively than others (Paoletti, 1999). In an ecological framework, biodiversity relies on 

the variety of living organisms in a delineated study area (Heywood and Watson, 1995; Pavoine 

and Doledec, 2005). However, it is difficult to quantify this broad and complex concept; in fact, 

nowadays there is not yet a universally accepted biodiversity measure.  

In this paper we aim to assess water quality through biodiversity by proposing the combined use 

of parametric biodiversity indices and the functional data analysis approach. This allows us to 

consider the multidimensional aspect of biodiversity and use statistical techniques, such as 

functional linear models, for studying the relationships between biodiversity and environmental 

characteristics. 
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Materials and Methods 

Biodiversity is a multidimensional concept accounting for both species richness (the number of 

different species represented in an ecological community) and species evenness (a measure of 

the relative abundance of each species in an area). Since it represents a good indicator of 

ecosystem quality, it should be analyzed and quantified to ensure its protection. In order to 

evaluate biodiversity we refer to parametric families of diversity indices (Hill, 1973; Patil and 

Taillie, 1982), which are usually referred to as diversity profiles. They consist of a sequence of 

measurements allowing different aspects of community structure to be encompassed in a single 

diversity spectrum. Diversity profiles present considerable advantage respect to the classical 

biodiversity indices. It is well known, in fact, that the use of a single index greatly reduces the 

complexity of the ecological systems (Gattone and Di Battista, 2009; Gove et al., 1994; Patil and 

Taillie, 1979). 

In particular the β diversity profile (Patil and Taillie, 1979, 1982) has been applied: 
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j jp  , and jP  is the abundance of the j-th species (the number of individuals belonging to 

the species j). The value of   denotes the relative importance of richness and evenness. The 

restriction that  1    assures that   profile in equation (1) has certain desirable properties 

(Patil and Taillie, 1979, 1982). The plot of equation (1) versus   provides the diversity profile 

which is a decreasing and convex curve. Some of the most frequently used indices of diversity 

are special cases of equation (1); in fact for  1    we get the richness index, for 0lim  we 

have the Shannon diversity index (Shannon, 1948) and for 1   we obtain the Simpson index 

(Simpson, 1949).  

Since diversity profile, regardless of how it is calculated, expresses diversity as a function of the 

relative abundance vector in a functional domain, it can be analyzed in a functional context 

(Gattone and Di Battista, 2009). Functional data analysis (FDA) addresses problems in which the 

observations are described by functions rather than finite dimensional vectors (Ramsay and 

Silverman, 2005; Ferraty and Vieu, 2006). It is important to emphasize that the functional datum 

should be regarded as a single entity instead of a sequence of observation. However, the 

empirical observation must necessary refer to the discretization of the domain; thus, in real 

applications, functional data are often observed as a sequence of point data. In this context, FDA 

approach is able to convert discrete observations to functional form by means of appropriate 

techniques such as the use of basis functions. Moreover, in a FDA framework, it is possible to 

use the functional tools to obtain more information on the data such as the analysis of the slopes 

of functions, reflected in their derivatives, and so on, by highlighting the characteristics of the 

curves. 

In an ecological framework, since diversity profile is not simply a sequence of observations, but 

a function in a fixed domain, it is possible to analyze the intrinsic structure of the data through 

FDA approach. With reference to water management, this framework has been used to explore 
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differences in water quality trends between site (Henderson, 2006). Indeed, we focus on a 

particular aspect of functional data analysis, called parametric FDA (De Sanctis and Di Battista, 

2012; Di Battista and Fortuna, 2013). In this case, the functional datum is expressed by a specific 

function known in advance. The observations, in fact, belong to a parametric family of functions, 

called S, with s real parameters, that is: 

 ( , )S f x θ        (2) 

where  1 2 s ,  ,  ,     θ ’ 
represents a set of unknown parameters taking values in a 

parameter space ϴ while x is the functional domain. In this framework, functional data constitute 

a subset S of some pL  space, with 0    p   and with the usual L
p
-norm, 

p
f   (Rudin, 

2006): 
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where X is an arbitrary measure space with a positive measure μ. In particular, we consider every 
pL  space with  0p   (Banach spaces). 

In an ecological setting, S could be the family of diversity profiles, such as   profile in equation 

(1), and for each i-th sites, i=1, 2, …, N, every relative abundance vector can be assumed as a 

single parameter,  1, .,i isp p  i ip θ , so that, p  . 

The advantage of parametric FDA approach is that the approximation by means of basis 

functions is not suitable because the underlying data process is known in advance and it is 

important to preserve its parametric form. 

 

Parametric fANOVA model 

In order to quantify the effects exerted on a functional observation by some factors, each at 

multiple levels, a parametric functional analysis of variance (fANOVA) model has been applied 

(Ramsay and Silverman, 2005). 

We assume that there is a single factor with K different levels or groups    1,  2, ,k K   and 

kn observations within each group; so the model for the i-th observation  1,2, .,i N  in the k-

th group can be expressed as follows: 

( ) ( ) ( )ik k ikf x x x                                                (4) 

where  ikf x is a functional response in the k-th group,  x  is the grand mean function (i.e. the 

average function across all treatments),  k x  represents the specific effects of being in a 

specific treatment and the residual function,  ik x  is the unexplained variation specific to the i-

th observation within the k-th group. The model in equation (4) can be written in matrix notation 

as: 
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                                                         f(x)=Zγ(x)+ε(x)                                                         (5) 

where         0 1 1 K Kx   x ,  x ,  , x         γ
Ꞌ 
is the (K+1) vector of parameter 

functions, f(x) is a N vector of functional observations,  xε is a vector of N residual functions 

and Z is a design matrix of dimension (N, K + 1), coding group membership. In particular each 

row of the matrix Z corresponds to a single observation; the first column consists entirely of ones 

to represent the overall mean and the subsequent K columns correspond to different groups with 

value one if the observation belongs to the k-th group, zero otherwise.  

In order to ensure the identifiability of treatments functions k , the sum to zero constrained is 

imposed: 

1
( ) 0

K

k
x


 kγ  x      (6) 

The model is equivalent to standard ANOVA, with the difference that the parameter  xγ , and 

hence the predicted observations    x  x ,f Zγ are vectors of functions rather than vectors of 

numbers. 

The parameter vector  xγ can be estimated using the standard least squares criterion; thus, 

minimizing the residual sum of squares: 

   
'

LMSSE( ) ( ) ( ) ( ) ( )x x x x dx    f Zγ f Zγ   (7) 

Minimizing equation (7) subject to the constraint in equation (6), gives the least squares 

estimates of the functional parameters: 

' 1 '( ) ( ) ( )x xγ ZZ Zf       (8) 

If there are no particular restrictions on the way in which γ(x) varies as a function of x, it is 

possible to minimize the discrete version of equation (7), individually for each x: 

   
2

( ) ( )x xf Zγ       (9) 

In order to determine if there is any statistically significant differences between group functions, 

a pointwise F statistic can be used (Ramsay and Silverman, 2005): 
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where ˆ( )xf  are the predicted values from a fitted fANOVA model as in equation (4). The 

equation (10) gives a function built from the series of point estimates at each point of the 

domain. It is the dependence of this quantity from x that makes the procedure different from the 

standard univariate or multivariate case. 
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Application: fish biodiversity in the province of Arezzo 

In order to provide an example of the advantages of the parametric FDA approach in the analysis 

of water quality monitoring network, the framework described has been applied to a real data set 

concerning ichthyic biodiversity in the province of Arezzo, Italy (further details on the data may 

be found in http://www.ittiofauna.org/provinciarezzo/carta ittica/index.htm).  

In 2006 fish abundance data have been collected for a total of 32 species and 104 streams which 

belong to the basin of four important rivers of Central Italy: Arno, Tevere, Marecchia and Foglia.  

 
Figure 1. Functional effects of fish zonation in the province of Arezzo. 

 

Ichthyic biodiversity in the province of Arezzo has been evaluated through the β-profiles in 

equation (1). 

As shown in figure (1), it is not possible to identify a clear order between river streams because 

the profiles cross each others. However it seems that the discrimination among river streams is 

mainly explained by species richness (for 1   ). It is possible to distinguish clearly an extreme 

situation of full dominance, with a site (in the basin of Chiana) with only one species. 

Naturally, several variables affect biodiversity and the analysis of their interaction is complex. 

As an example, we consider the classification of European rivers according to fish fauna 

zonation which represents the fish fauna found in them. This variable shows variations in 

taxonomic composition which are related to physical and chemical changes. Thus, it describes 

the spatial distribution of fish by identifying different habitat. In order to provide information on 

the effect of habitat on fish biodiversity in the province of Arezzo, we resort to this qualitative 

factor, named zonation of fish fauna. In particular, we refer to the classification proposed by 

Huet (1949) which distinguishes four zones. In the province of Arezzo we have only two zones: 

Salmonids and Cyprinus zones. The first zone is usually characterized by slope and cold (max  

15°C) rivers, high and well oxygenated water, fast water stream, uneven substrate (with rock, 

stones, pebbles and gravel) and absence of aquatic vegetation. In the second case, instead, the 

rivers present slight slope, warm waters in summer, very slow water stream and substrate 

prevalently muddy. In order to quantify how much of the pattern of biodiversity variation is 

http://www.ittiofauna.org/provinciarezzo/carta%20ittica/index.htm
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explainable by the level of fish zonation, the fANOVA model in equation (4) has been applied 

under the constraint in equation (6). Figure (2) displays the two functional effects of being in a 

specific zone. It is evident as Cyprinus zone exerts a positive effect on fish biodiversity. This 

effect is present throughout the whole domain, and especially for   0  ; therefore there is a low 

effect for species richness  1 .    

 
Figure 2. Functional effects of fish zonation in the province of Arezzo. 

Figure (3) shows the predicted β-profile for each fish zonation group. Obviously, the lower 

diversity is present in the group of Salmonids. Since the two profiles no intersect each other, we 

can say that in the Cyprinus zones there is greater biodiversity; thus, in the river streams of the 

province of Arezzo, there is a prevalence of these fish species in terms of richness and evenness. 

 
Figure 3. Estimated β profiles for each of the two fish zonation in the province of Arezzo. 

 

Figure (4) shows the pointwise F test function in order to formally test the null hypothesis that 

there is no statistically significant differences among group functions. In particular the blue curve 

represents the observed F statistic calculated as in equation (10); while the grey line indicates the 
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5% significance level for the F distribution with (K-1) and (N-K) degree of freedom. In this case 

we have 1 and 102 degree of freedom respectively, so the value of the 5% significance level of  F 

is equal to 2.75. The observed F statistic is everywhere above the significance level,  so we can 

conclude that there are clear differences between the zonation groups in terms of their mean 

function.  
 

 

 
Figure 4. Functional F test for the fANOVA model in the province of Arezzo. 

 

Conclusions 

In this paper we have presented some advantages provided by the study of biodiversity through 

the  functional approach. In particular, the joint use of diversity profiles and functional 

parameters allows us to consider diversity in its multidimensional aspect, evaluating it in relation 

to richness and evenness. Furthermore, statistical analysis techniques such as the analysis of 

variance can be implemented in order to understand the relationships between functional data 

and other variables of particular interest.  
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