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Abstract 

The Water Resources Management Division of the Department of Environment and 

Conservation performs routine water sampling to measure the physical and chemical parameters 

of select water bodies in Newfoundland and Labrador. Ionic concentration parameter 

measurement is performed during routine water sampling to complement some of the key 

indicator parameters measured in real time at these select water bodies. The collection, 

laboratory analysis and measurement of water samples are a time consuming process. Some of 

the common conducting ions measured during routine sampling are sodium, calcium, chloride 

and sulphate. These conducting ions can be estimated using continuously measured specific 

conductance after observing the effect of flow. The estimated measurement will help identify the 

quality of water at a given point in time and hence save time and resources in performing routine 

sampling. It will also help estimate the quality of water in remote locations where routine 

sampling is not feasible. This paper compares four water bodies on the island part of 

Newfoundland and Labrador and estimates the ionic concentration using continuously measured 

specific conductance. 
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Introduction 

The Water Resources Management Division (WRMD) of the Department of Environment and 

Conservation (ENVC) of the Province of Newfoundland and Labrador (NL) have established a 

near real time water quality (RTWQ) monitoring network throughout the province where key 

indicator water quality data is collected continuously. This water quality data can be used to 

monitor the health of aquatic ecosystems, establish trends and determine when specific water 

quality events occur. The information obtained from the network is needed by the WRMD to 

implement its mandate and allows managers and policy makers to make informed decisions on 

early warning of adverse water quality events. The general public, policy makers, government 

agencies and private sectors greatly benefit from such timely data and information.  

The water quality parameters measured through the real time monitoring system are water 

temperature, pH, dissolved oxygen (DO), specific conductance (SC) and turbidity. Percent 

saturation and total dissolved solids are two additional parameters calculated from DO and SC. 

These key indicator parameters provide significant information to better understand the water 

quality of a particular water body. Routine water quality grab sampling is also performed in these 

select water bodies. The grab sampling is part of the Quality Assurance/Quality Control 

(QA/QC) protocol for NL RTWQ program which is used to measure ionic concentrations of 

water quality parameters. Some of these include sodium, calcium, chloride, and sulphate. The 

collection, shipping and analysis of grab samples in the lab require a significant period of time to 
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measure the ionic concentration of the sample contents. This time lag can be greatly reduced if 

some of these ionic concentration parameters can be estimated in real time. As grab sample is 

collected at the same time as RTWQ parameter measurement, it is possible to correlate some of 

the grab sample parameters with the RTWQ parameters (see Figure 1) (Granato and Smith, 

1999). Among all parameters, SC is more likely to correlate with the ion conducting parameters 

measured during grab sampling (Lind, 1970).   

Water quality sampling sites across the island of Newfoundland were used to analyze site 

specific relationships between SC and sodium, calcium, chloride and sulphate ions. The sites 

chosen were Leary’s Brook (LB), Waterford River (WR), Humber River (HR) and Rattling 

Brook below bridge (RB) (Figure 2). These sites have been sampled extensively for the last four 

to five years. The sites were selected based on the degree of anthropogenic activity taking place 

and the amount of dissolved solid material received by these water bodies in order that 

comparative analysis can be drawn from the data obtained. 

This paper examines how the estimation of conducting ion concentration helps to optimize the 

resources and sampling time resulting in overall cost and time savings under the Water Quality 

Program. This approach would help the WRMD estimate the water quality in real time without 

waiting for lab analysis results. It will be very useful where tight timelines, budget constraints 

and human resources limitations are matters of concern. It can also be used to estimate water 

quality variables at remote sampling locations that are expensive and difficult to access. The 

results of this report will help to better understand how increased ionic concentration leads to 

elevated SC at impacted sites.  

At first the methodology applied in this analysis is described followed by the description of the 

site locations. A brief discussion of the data collection and literature review is then performed. 

The effect of flow on each of the parameters is then shown. This is followed by statistical 

analysis on the dataset along with the regression models developed. Finally, the model 

verification and validation is performed along with concluding statements. 

Methodology 

Figure 1 shows the overall methodology of developing the ionic concentration model and 

applying the model to estimate ionic concentration in real time. The model is developed by using 

regression analysis on grab sample ionic concentration and real time specific conductance data.  

 

 

 

 

 

Figure 1. Methodology to estimate real time ionic concentration data 

The model is then applied using real time specific conductance data on select stations to estimate 

the ionic concentration values for those stations. The model provides a measure of strength and 

variation of the relationship between real time and grab sample data. Site specific models for 

sodium, calcium, chloride and sulphate are developed in the four sampling locations across the 

island part of Newfoundland using SC data. 
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Description of site and sampling locations 

Figure 2 shows the location of the four sites on the island part of Newfoundland from which the 

data is collected. The sites are: Leary’s Brook, Waterford River, Humber River and Rattling 

Brook below bridge. These sites are chosen based on the degree of anthropogenic activity and 

availability of water quality data. Leary’s Brook and Waterford River are located in an urban 

setting with a high level of anthropogenic impact from the surrounding areas. Rattling Brook is 

non-urban but in the middle of a construction site, while Humber River is non-urban with little 

impact from surrounding areas. 

 

Figure 2. Geographic location of the four sites chosen for regression modelling 

Leary’s Brook at Clinch Crescent was the first RTWQ station established in 2001. The sampling 

site is located in a developed section of the City of St. John’s close to Memorial University. One 

of the main shopping centres in the city is located immediately upstream of the sampling site 

where a portion of the river is culverted. The area is densely surrounded by houses, buildings, 

business facilities and major roads. Road salts are applied during the winter months which affect 

the water quality within the river.  Significant urban runoff can be observed in the culvert area as 

a result of surrounding anthropogenic activities. 

Waterford River at Kilbride station was established in 2005. The sampling site is situated near 

the downtown area of the City of St. John’s. The area around the sampling site is densely 

surrounded by houses, buildings, roads and highways. Major industrial areas are also located 

within the drainage basin. Road salts are applied during the winter months which affect the water 

quality within the river. The river is highly impacted as a result of surrounding anthropogenic 

influence which affects the quality of water at the sampling site. 

The Humber River is the second largest river on the island of Newfoundland. The sampling 

station was established in December 2003. It is classified as a non-urban station. There are a 

number of small communities located within the watershed but the overall population density is 

sparse. There are some transportation routes throughout the basin which are salted during the 
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winter months. However, due to the large volume of water within the system, the ionic 

concentration is diluted. 

Rattling Brook below bridge station was established in December 2006 on the south eastern 

Avalon Peninsula. It is within the construction zone of a commercial processing facility. Major 

work resulting from the construction of the processing facility is occurring along the river and 

access to the sampling sites is controlled due to security and safety concerns. The river is 

moderately impacted with ionic concentration due to sparse population and the presence of the 

processing plant and facilities. 

Literature Review 

Conductivity reveals the presence of dissolved materials in water (Williams, 1966) consisting of 

metallic ions, organic and inorganic materials. It is the ability of a fluid to conduct electricity.  

Specific conductance (SC) is the inverse of electrical resistivity, corrected at 25 °C, since fluids 

conduct more at higher temperatures. Hence SC is an indirect measure of the amount of 

dissolved substances (Hach, 2006). A detailed study by Granato and Smith (1999) in 

Northborough, Massachusetts applied regression analysis in their study to measure constituent 

calcium, sodium, and chloride on the basis of continuous records of SC of highway runoff. 

Christensen, Rasmussen and Ziegler (2002) and Ryberg (2006, 2007) also developed regression 

equations to estimate constituent concentration yields in water bodies in Kansas and North 

Dakota. Reham El-Korashey (2009) has applied regression analysis to estimate sodium and 

chloride in Bahr El Baqar Drain in Egypt using electrical conductivity as an explanatory 

variable. Recent study by Harvey, Lye and Khan (2011) shows some of the advances in RTWQ 

monitoring and how it can be applied in estimation of constituent parameter concentration. The 

Ordinary Least Square (OLS) has been applied in many studies (Granato & Smith, 1999, 

Christensen et al., 2002) and is a standard procedure to estimate water quality constituents (Hem, 

1992).    

Data Collection and Analysis 

Conductivity data is collected through NL RTWQ monitoring network. The network consists of 

a series of monitoring stations with sensors collecting data across NL. Monitoring instruments as 

shown in figure 3 are deployed beneath the water’s surface in a representative section of the 

stream which continuously measures RTWQ parameter data for each sampling station. 

 

 

 

 

 

Figure 3. Water Quality Parameter Sensors 

Grab sample data is collected using monthly grab sample results measured at an accredited lab. 

Daily flow data is collected using Water Survey of Canada’s centrally-managed database 

HYDAT. The data retrieval and management for NL RTWQ network is shown in figure 4. 
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Figure 4. Real Time Data Retrieval and Management 

 

The assumptions for Linear Regression are individually tested using Residual plots for the tested 

water quality parameters in Minitab
TM

. The independence, homoscedasticity, and normality of 

the error distribution assumption for regression analysis for all parameters were fulfilled.  

 

The box-plots in Figure 5 compare the variability of conductivity, sodium, calcium and chloride 

values across locations. Sulphate values were not tested due to the presence of less than detect 

values for two of the four stations. The median line was connected to all the stations to observe 

the variability and difference in parameter values. The urban stations showed more variability in 

parameter values in comparison to the rural stations. This can be noted by looking at the flatness 

of the box plots for the rural stations and the presence of outliers in the urban stations.  

 

Table 1 shows the statistical measurements for real time Specific Conductance for all four 

stations. The variability of specific conductance measurement is much higher in the urban 

stations compared to the non-urban stations. The high variations can be due to increased 

snowmelt or storm runoff that takes place during seasonal weather changes. 

Table1. Statistical analysis for real time data in all stations 

Station Sample Size Range (µS/cm) Mean Median (Q2) Q1 Q3 

Leary’s Brook 31 148.1 - 1346 450.6 360.2 287 505 

Waterford River 30 235 - 1417 529.4 438.5 369.3 494.5 

Humber River 29 25.5 - 43.4 34.94 35.6 31.75 38.6 

Rattling Brook 29 27.2 - 41.5 34.13 35.1 31.5 36.3 
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Figure 5. Comparisons of parameter values across locations 

Effect of flow on parameter concentration 

The interval plot for monthly flow for all stations is shown in figure 6. Four to five years of flow 

data obtained from HYDAT is used in this graph. The confidence interval for each month is also 

shown. The highest seasonal flow for most stations occurs during the month of April to May 

while the lowest seasonal flow occurs during July to October. The rise in flow corresponds to 

snow melt which immediately dips with a low flow season in the summer months.  

 

Figure 6: Seasonal Flow Interval Plot using four to five years of flow data for all stations 

The effect of flow on parameter concentration is discussed in Clissie, Pollock and Cunjak (1996). 

Figure 7 show scatter plots with Lowess lines to see if relationships exists between parameter 

concentration and flow. Although flow plays a major role in controlling parameter concentration, 

the Lowess lines in this case displays lack of clear patterns between parameter concentration and 
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flow. As instantaneous flow data was not available at the time of parameter concentration 

measurement, the average daily flow may dampen some of the effects of flow on parameter 

concentration. 

 

 

Figure 7. Effect of flow on parameter concentration 

Regression analysis was performed between parameter concentration and flow is shown in table 

2. All parameters for all stations show poor correlation between parameter concentration and 

flow. Transforming the model does not significantly improve this relationship. 

Site Specific Parameter Model For All Stations 

Figures 8 show Scatter plots with Lowess lines to check linear patterns for sodium, calcium, 

chloride and sulphate with respect to specific conductance (SC). The Lowess lines display linear 

patterns for Leary’s Brook and Waterford River which is absent in Rattling Brook below Bridge 

and Humber River.  

As shown in the previous section, the effect of flow on parameter concentration was minimal. 

Based on the Lowess lines in figure 8, the effect of specific conductance on parameter 

concentration was analyzed. The resulting models for all stations are shown in Table 3. Due to 

non-normality and the presence of outliers in most of the above parameter data values, log 

transformation was performed on the original data. Ordinary least square was applied on the log 
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transformed data using Minitab™. Bias correction (Duan, 1983) was performed on the log 

transformed model. 

Table 2. OLS Regression showing the effect of flow on parameter concentration 

Variable Regression Model 
R-

square 
P-Value Regression Model 

R-

square 

P-

Value 

LEARY’S BROOK WATERFORD RIVER 

Sodium Na = 79.12 – 2.72 × Flow 0% 0.915 Na = 88.82 + 1.643 × Flow 0% 0.644 

Calcium Ca = 9.78 - 3.11 × Flow 13.3% 0.025 Ca = 11.49 - 0.1744 × Flow 0% 0.367 

Chloride Cl = 128.8 – 12.05 × Flow 0% 0.201 Cl = 137.5 + 4.056 × Flow 0% 0.523 

Sulphate SO4 = 10.07 - 0.54 × Flow 0% 0.672 SO4 = 12.11 - 0.047 × Flow 0% 0.816 

HUMBER RIVER RATTLING BROOK 

Sodium Na = 2.29 + 0.0009 × Flow 0% 0.443 Na = 4.492 – 0.0913 × Flow 0% 0.548 

Calcium Ca = 3.734 + 0.0023 × Flow 0.03 0.03 Ca = 1.737 + .0283 × Flow 0% 0.802 

Chloride Cl = 3.598 + 0.0016 × Flow 5% 0.128 Cl = 6.722 – 0.106 × Flow 0% 0.735 

 

 

Figure 8. Scatterplot with Lowess Lines for all stations models 
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The models show strong correlation between ionic concentration parameters and specific 

conductance for Leary’s Brook and Waterford River while a weaker correlation for Humber 

River and Rattling Brook. The strong correlation is indicated by high R-square value, low 

relative percentage difference (RPD) value, along with p-value < 0.01 indicating statistical 

significance for the correlation. The association is stronger in sodium and chloride in comparison 

with calcium and sulphate. 

Table 3. Model for sodium, calcium, chloride and sulphate for all stations 

Variable 
Sample 

Size 

Range 

(mg/L) 
Median Regression Model RPD 

R-

square 

P-

Value 

LEARY’S BROOK 

Sodium 31 26 - 270 63 log(Na) = - 0.979 + 1.08 × log(Cond) 0.78 98.70% <0.01 

Calcium 31 4.2 - 16 8 log(Ca) = - 0.811 + 0.654 × log(Cond) 1.56 80.60% <0.01 

Chloride 31 35 - 420 94 log(Cl) = - 0.878 + 1.11 × log(Cond) 2.88 96.70% <0.01 

Sulphate 31 6 - 18 9 log(SO4) = -0.220 + 0.461 × log(Cond) 0.51 88.40% <0.01 

WATERFORD RIVER 

Sodium 30 33 - 280 68 log(Na) = - 1.02 + 1.09 × log(Cond) 2.25 96.50% <0.01 

Calcium 30 5 - 21 11 log(Ca) = - 0.494 + 0.569×log(Cond) 0.98 77.40% <0.01 

Chloride 30 51 - 550 110 log(Cl) = - 0.990 + 1.15 × log(Cond) 2.29 91.70% <0.01 

Sulphate 30 7 - 22 11 log(SO4) = - 0.182+0.466×log(Cond) 1.16 72.40% <0.01 

HUMBER RIVER 

Sodium 29 2-3.6 2.6 log(Na) = 0.54 + 0.103 × log(Cond) 21.24 0.40% 0.734 

Calcium 29 3.7-5.9 4.1 log(Ca) = 1.14 + 0.092 × log(Cond) 15.5 1.3% 0.549 

Chloride 29 3-5.0 4 log(Cl) = 1.32 + 0.019 × log(Cond) 10 0% 0.916 

RATTLING BROOK 

Sodium 29 3.0 - 5.2 4.4 log(Na) = 0.234 + 0.265 ×log(Cond) 7.93 6.20% 0.192 

Calcium 29 1.2 - 3.0 1.7 log(Ca) = - 1.76 + 1.31 × log(Cond) 8.41 58.10% <0.01 

Chloride 29 5.0 - 9.0 6 log(Cl) = 0.092 + 0.472 × log(Cond) 10.3 12.30% 0.103 

 

Model Validation 

The obtained results show that it is possible to predict ion concentration of sodium, calcium, 

chloride, and sulphate from real time specific conductance as long as there is enough variation 

within the parameter values of grab sample data. This would enable getting instantaneous 

estimations of parameter values thus saving wait times for grab sample results to be returned 

from a laboratory. The grab samples collected after the model development were used for model 

validation. The models obtained for Leary’s Brook, Waterford River and Rattling Brook below 

Bridge were used for validation since Humber River parameters have shown poor correlation.  

The graphs in Figure 9,10 and 11 shows the ionic concentration estimation and validation of 

parameters used in Leary’s Brook, Waterford River and Rattling Brook models. The models 
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from Table 3 were used to estimate ion concentration (sodium, calcium, chloride and sulphate) in 

real time. The model is represented by a line in the graph. The corresponding calibration grab 

sample values were placed as points within the graph to see how closely it fits to the model. As 

shown in figure 9, the calibration grab samples lie closely to the regression model line.  

 

Figure 9. Model validation for Leary’s Brook parameters 

In order to validate the model, ten additional validation grab samples were used after the model 

development. The validation grab samples are represented as triangular points in order to 

distinguish between calibration and validation grab samples. As shown in figure 10 the 

validation grab samples lie closely to the model line. 

 

Figure 10. Model validation for Waterford River parameters 

Calcium was the only parameter that showed a good fit for Rattling Brook. As shown in figure 

11, the calibration and validation grab sample lies reasonably close to the regression model line. 

 

Figure 11. Model validation for Rattling Brook parameter 
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Conclusions 

It is evident from the results presented that increased variation within grab sample measurements 

leads to a better regression model. This has been observed in the case of Leary’s Brook and 

Waterford River as well as for calcium in Rattling Brook below bridge. The variation in the level 

of ionic concentration is largely due to the presence of anthropogenic influence within these 

rivers. In the case of Humber River with little anthropogenic influence, the ionic concentration of 

most parameter measurements were below the detection limit, and hence it was difficult to apply 

any statistical tests to identify if a relationship exists between real time parameters and grab 

samples. The high flow of water in that river diluted most of the parameter concentrations which 

is represented in the low measurements of parameter values.  

 

This study will aid in estimating ionic concentration in real time for the sites where a good fit for 

regression was obtained. It will also reduce the time delay required to measure water quality 

constituents at the laboratory by estimating ionic concentration instantaneously. Using the real 

time parameter specific conductance, the model will help predict the surrogate parameters 

(sodium, chloride, calcium and sulphate) in real time which can be viewed graphically. In order 

to maintain the accuracy of the model, it must be calibrated every year when newer grab samples 

are available. This will adjust the model accuracies based on the updated grab sample values.  

 

Potential parameters of interest can be estimated in emerging real time sites using real time 

parameters as predictors by applying the methodological analysis applied in this study. One such 

parameter can be total suspended solids (TSS) which can be estimated using real time turbidity. 

This would be beneficial to industries monitoring real time water quality parameters who would 

like to ensure that the TSS values are in compliance with the current regulations. Another area of 

application of this model is to identify the impact of water quality due to the application of road 

salts. Operational decisions can be made in a proactive manner with the available estimated data. 
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