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Abstract 

The 2013 floods in Alberta highlighted the need for better flood prediction. Though the 

mechanisms behind floods and extreme events in urban areas are understood and documented, 

the uncertainty in data during these events makes it difficult to accurately predict and assess the 

risk of floods. In this research, a fuzzy number based linear regression model is proposed that 

incorporates uncertainty and characterizes risk of extreme events in the Bow River at Calgary, 

Alberta, Canada. The proposed model uses a fuzzy linear regression model to predict peak flow 

rate using mean daily flow rate. Lagged data from one to seven days is also considered. Results 

of the research show that using a fuzzy number approach to predict uncertain extreme events 

outperforms traditional regression methods in the Bow River at Calgary. The developed model 

can accurately predict daily peak flow, including a flood event in 2005, up to 7 days in advance. 

In addition to this, fuzzy number model output can be used to further characterize the risk of 

peak flow magnitude. These results are extremely beneficial for water resource managers who 

implement flood mitigation and defence strategies.  
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Introduction 

The flood that occurred in Alberta in June 2013 was one of the worst natural disasters to occur in 

Canada and the event highlighted the need for better flood prediction. The floods were the 

costliest natural disaster in Canada, causing approximately $6 billion in damage (Environment 

Canada, 2013). In addition to this, the floods caused four deaths and displaced more than 

100,000 Albertans in over 30 communities (Alberta Government, 2014). The floods also 

impacted the environment; high flow rates caused permanent changes to watersheds in southern 

Alberta, including the transport of large amounts of sediment and the destruction of river banks, 

channels and aquatic ecosystems (Environment Canada, 2013). 

Starting on 3 June 2013, the Government of Alberta posted High Streamflow Advisories for 

impacted watersheds. By 10 and 11 June 2013, a Flood Watch and Flood Warning were issued 

for selected watersheds. However a wider Provincial Advisory was not issued until 19 June 2013, 

following extreme precipitation events in southern Alberta (ESRD, 2013; Environment Canada, 

2013). Thereafter, most of the Province was under a Flood Watch and Flood Warning from 20 

June to 29 June 2013 (ESRD, 2013). The unprecedented heavy rainfall that occurred in June 

2013 is largely believed to have caused the floods, however other contributing factors should not 

be ignored. For example, satellite imagery from May 2013 indicated that there was little capacity 
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for the watersheds in the region to store excess water, suggesting a risk of floods (Environment 

Canada, 2013).  

Though the Government of Alberta uses numerical modelling as part of its flood mitigation 

strategy (Alberta Government, 2014), the flood modelling predictions did not provide a warning 

far enough in advance to trigger Advisories, Flood Watch or Flood Warnings from the 

Government. Thus, there is a need for improved flow or peak flow rate models, which 

incorporate the risk of flooding. This would be extremely beneficial in preparing for floods in the 

future. If the impact of a flood can be estimated in advance, there is the potential to reduce the 

enormous social, environmental and financial costs associated with it. 

However, flood prediction is inherently uncertain. While the mechanisms behind floods in urban 

areas are understood and documented, the uncertainty in data during these events makes it 

difficult to accurately predict and assess the risk of floods in the future. In addition to this, 

physically-based models try to simulate complex physical systems by breaking them down into 

smaller, simpler units (Cox, 2003). These models also require specific and often hard to obtain 

data to parameterize the various sub-models. Both these factors, the simplification and the high 

data requirements, introduce additional uncertainty in physically-based models. This uncertainty 

is often difficult to propagate through the model and results in highly uncertain prediction of 

flow rate and other flood parameters.  

An alternative approach to physically-based models that are typically used for flood prediction, 

mitigation and planning, is to use a data-driven approach. Data-driven models are based on 

generalized relationships, links or connections between input and output datasets (Solomantine & 

Ostfeld, 2008). The models can characterize a system with limited assumptions about it and often 

have similar, if not better performance than physically-based models. A simpler model structure 

means that the propagation of uncertainty from different sources is easier. While data-driven 

models may also be data intensive, the data can be collected from on-going monitoring systems, 

e.g. real-time flow rate data that is routinely collected by Environment Canada (Environment 

Canada, 2014), rather than data specific to the model in question. However, while a data-driven 

approach has its obvious advantages over physically-based models, they have different 

objectives. Data-driven models may improve our predictions of the future state of a system, but 

they might not provide a better physical understanding of the system. From this aspect, flood 

prediction for mitigation and planning purposes is an ideal candidate for a data-driven approach.  

The nature of data-driven modelling means that these methods have intrinsic uncertainties 

associated with it. This uncertainty is not of purely random or probabilistic in nature, making it 

well suited for the use of fuzzy number (Dubois & Prade, 1997; Ozbek & Pinder, 2006). Fuzzy 

numbers use fuzzy set and possibility theory to describe uncertain or imprecise information. A 

fuzzy number is a specific type of quantity that expresses uncertain or imprecise quantities, 

measurements or observations (Zhang & Achari, 2010; Huang, et al, 2010). A major advantage 

of using fuzzy numbers is that they have the ability to provide more meaningful information 

compared to traditional techniques, especially in highlighting the possibility and probability of 

events like floods. Fuzzy numbers have been widely used in hydrology to represent uncertainty 

in the parameters of numerical models (Khan and Valeo, 2014; Khan et al 2013). The literature 

demonstrates the utility and advantage of using fuzzy numbers; a summary of these applications 

can be found in Khan and Valeo (2014).  
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Thus, there is potential to use a fuzzy number based data-driven model to predict the risk of 

floods like those that occurred in southern Alberta in 2013. A fuzzy linear regression (FLR) 

method, proposed by Khan and Valeo (2014) has demonstrated the utility of a fuzzy number 

based data-driven model. Previous studies using this method have shown improved prediction 

and risk analysis of environmental factors (Khan and Valeo, 2014; Khan et al 2013). In this 

paper, this FLR method is used predict peak flow in the Bow River, in Calgary, Alberta, Canada 

and the associated risk of floods.  

The objective of this research is to improve flood prediction in the Bow River basin in Calgary, 

Alberta, Canada using a fuzzy number based data-driven approach. This model should provide 

accurate peak flow estimates to be able to quantify the severity of the flood, and also to provide 

the capacity for early flood mitigation and preparation, in a timely and effective manner. An FLR 

model is proposed, under the condition that it have minimal data requirements. Results from this 

method will be compared to simple linear regression methods. Also, a risk analysis using these 

results will be developed. 

 

Methods 

Data Collection 

The Bow River originates from the Rocky Mountains and flows southeast through the City of 

Calgary, as shown in Figure 1. It has an average annual discharge of 90 m3/s and it provides 

approximately 60% of the potable water for the city, is used for recreation purposes, and 

supports an aquatic ecosystem used for its fish resources. After flowing through Calgary, the 

river meets the Oldman River, and flows east as the South Saskatchewan River and ultimately 

draining into Hudson Bay (Robinson et al, 2009). Hourly flow rate for the Bow River in Calgary 

(Station Number 05BH004) was obtained from Environment Canada for the period from 2004 to 

2008. During this period, one major flood occurred in 2005 – the maximum peak flow recorded 

that year was 728 m3/s on 19 June 2005.  

 
Figure 1. An aerial image of the City of Calgary showing the location of the flow rate monitoring station within the 

Calgary city limits. The insert shows the location of Calgary within Canada. 
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For this research, three years of data (2004, 2006 and 2008) was used to calibrate the FLR model, 

while the remaining two years data was used to validate the model. This selection meant that the 

flood of 2005 was not used to calibrate the model. This was done intentionally, so that the ability 

of the model to predict extreme events (like that in 2005) could be measured. Only the ice-free 

period, typically April through November was used in this study.  

Figure 2 shows a trend plot of the daily peak flow (Qp) and the mean daily flow (Qd). Apart from 

the flood event in 2005, there is very little inter-annual variability. The similarity of the two 

trends suggests a high correlation between the variables; this implies that Qd might be a good 

candidate as a variable to predict Qp. Note that hourly data for December 2006 was missing; only 

daily mean values were available. Thus Qp could not be calculated for this period. 

 

 

Figure 2. A trend of daily peak flow (top) and mean daily flow (bottom) for the Bow River at Calgary between 2004 

and 2008. 

A correlation analysis was conducted between the two variables to determine different time lags 

that can be potentially used to predict Qp using Qd. Figure 3 shows a plot of Qp versus Qd at a lag 

of 0 days (i.e. no lags, for reference), 1 day, 3 days and 7 days. As expected, the correlation 

decreases as the lag increases. However, even after 7 days, the correlation coefficient is high at 

0.79. This means that if the uncertainty in predicting Qp can be quantified, then accurate peak 

flow rates can be predicted a week in advance. 

Based on this initial analysis, the following functional form of the FLR model was selected: 

𝑄𝑝(𝑡) = 𝑓(𝑄𝑑(𝑡 − 𝑑)) 

where Qp(t) is the daily peak flow on day t, Qd is the mean daily flow on day t –d, and d is the 

time lag in days, selected as either 1, 3 or 7 days. However, to construct an FLR model, each of 

the model inputs, output and coefficient must be in fuzzy number format, before FLR can be 

conducted. This is detailed in the following section.  
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Figure 3. A comparison of correlation between Qp and Qd at lags of 0, 1, 3 and 7 days (clockwise from top left). 

 

Fuzzy Linear Regression 

Fuzzy linear regression is a method used to extend linear regression for applications involving 

fuzzy numbers [Khan and Valeo, 2014]. It provides an alternative method when simple linear 

regression may not be possible, e.g. when assumptions of linear regression are not met, or if 

there is obvious fuzziness in the underlying data or process. FLR tries to capture the vagueness, 

and the non-random or fuzzy error in the model structure: it is assumed that deviations are due to 

system fuzziness, i.e. the fuzziness of the regression coefficients (Chang and Ayyub, 2001).  

A fuzzy linear regression is proposed in Khan and Valeo (2014) is implemented to predict Qp in 

this research. The results from this an analysis are compared to observed data, and the results 

from simple linear regression for comparison purposes. This FLR method is unique in that fuzzy 

number inputs, outputs and regression coefficients are used, whereas other FLR techniques do 

not typically use fuzzy numbers for each of these variables (Khan and Valeo, 2014). In addition 

to this, the FLR method used here uses non-linear membership functions to define fuzzy 

numbers; this is much more suitable for analysis of flow rate, which is typically not 

symmetrically distributed. A probability-possibly transformation is used to construct convert the 

observed hourly flow data to daily mean flow rate. An example of this transformation for three 

different flow regimes (i.e. low flow, medium flow and high flow) is shown in Figure 4 for daily 
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mean flow. The background for this transformation can be found in Dubois et al (1993) and 

Dubois et al (2004) and is not discussed further here. Daily peak flow is handled differently: first 

the peak flow rate for each day is collected, and then a range of ±6% is used to determine the 

upper and lower fuzzy limits of the measurement (Khan et al, 2013).  

 

 
Figure 4. Three examples of probability-possibility transformations used to create fuzzy numbers from observed 

hourly flow rate data. 

The objective of FLR method is similar to the simple linear regression, however, instead of 

minimizing the residual between an observed and regressed value, the distance between two 

fuzzy numbers is minimized instead. Given a set of fuzzy observations 𝑄̃𝑑𝑖
 and 𝑄̃𝑝𝑖

, and their 

corresponding membership functions, µ(𝑄̃𝑑𝑖
) and µ(𝑄̃𝑝𝑖

), for (i = 1, 2, ..., n) an FLR model is 

defined as: 

𝑄̃𝑝 = 𝐴̃ + 𝐵̃𝑄̃𝑑 

where the coefficients 𝐴̃ and 𝐵̃ are fuzzy numbers. The objective is to solve the following least-

squares problem: 

min 𝑟(𝐴̃, 𝐵̃) = ∑ 𝑑2

𝑛

𝑖=1

(𝑄̃𝑝𝑖
, 𝐴̃ + 𝐵̃𝑄̃𝑝𝑖

) 

where 𝑑2(𝑄̃𝑝𝑖
, 𝐴̃ + 𝐵̃𝑄̃𝑝𝑖

) = ∪ [𝑄̃𝑝𝑖
− 𝐴̃ − 𝐵̃𝑄̃𝑝𝑖

]𝜇 for i  = 1, 2, ..., n and µ = 0 to 1. The metric d 

measures the sum of the squared-deviations of the observed (𝑄̃𝑝𝑖
) and predicted (, 𝐴̃ + 𝐵̃𝑄̃𝑝𝑖

) 

intervals […]µ, for all alpha-cuts between µ = 0 and µ = 1. Using fuzzy arithmetic ensures that 

the coefficients 𝐴̃ and 𝐵̃ are normal and convex, a requirement of fuzzy numbers. 
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Error Analysis 

The Nash-Sutcliff model efficiency (NSE), Root Mean Squared Error (RMSE), and the Mean 

Absolute Error (MAE) are used to measure the performance of both the FLR and simple linear 

regression models.  

 

Results and Discussions 

Figure 5 shows the results of applying the both simple linear regression and FLR method to 

predict Qp using Qd with a 7 day lag for the calibration dataset (i.e. data from 2004, 2006 and 

2008). For the simple regression, the NSE was 0.66, RMSE was 30.19m3/s, and MAE was 18.88 

m3/s. For FLR, the NSE was between 0.64 and 0.66, RMSE was between 29.18 and 33.22 m3/s, 

and MAE was 17.08 to 22.62 m3/s. The intervals are from the results of calculating the error at 

each membership level. Two important results can be seen from this figure, first in general, a 7-

day lag can reproduce the general trend of peak flow. This is extremely important in highlighting 

advance warnings of a flood. Secondly, in comparing to the two methods, the FLR method is 

better able to reproduce higher values of Qp within the μ = 0L and 0R interval (note that this 

interval is defined by the lower (L) and upper (R) values of Qp when the membership level is 0).  

 

 

  
Figure 5. A comparison of result of simple linear regression (left) and fuzzy linear regression (right) for the model 

calibration dataset. 

Figure 6 shows the same results for the validation dataset (2005 and 2007). This dataset included 

the floods that occurred in June 2005. While the simple linear regression method underestimates 

the flood peak flow on June 19 2005 by about 200 m3/s, the FLR method produces results where 

the flood Qp is nearly within the bounds of the μ = 0L and 0R interval. The significance of these 

results is that the FLR model predicted a risk of a flood 7-days in advance. The importance of 
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this fact can be highlighted by the fact that the training data used to construct the FLR model did 

not contain any major flood events.  

 

 

  
Figure 6. A comparison of result of simple linear regression (left) and fuzzy linear regression (right) for the model 

validation dataset. 

The errors calculated using the validation dataset for the simple regression are an NSE of 0.60, 

RMSE was 53.36 m3/s, and MAE of 24.33 m3/s. For FLR, the NSE was between 0.54 and 0.61, 

RMSE was between 50.04 and 60.90 m3/s, and MAE was between 22.58 and 29.29 m3/s. These 

errors reduced as the lag was shortened from 7-days to 1-day. At 1-day, for the validation dataset 

(results not shown) were NSE of 0.87, RMSE of 30.16 m3/s, and MAE of 9.67 m3/s for simple 

regression. For FLR these values ranged between 0.80 and 0.88 for NSE, 30.33 and 35.78 m3/s 

for RMSE and 9.71 and 12.50 m3/s. 

 

Risk analysis 

One advantage of using FLR is the predictions from the model can be directly used to measure 

risk of flood events, using a possibility-probability transformation (Dubois et al, 1993; Dubois et 

al 2004). This transformation can be used to estimate the probability of Qp occurring given a 

fuzzy number. In Figure 7 below, the predicted fuzzy number, the predicted Qp using simple 

regression and the observed Qp is shown for June 19 2005 using a 1 day lag. The results from the 

FLR method predict that the probability of Qp to be greater than the observed Qp of 728 m3/s is 

approximately 24%. It also estimates that the probability of Qp to be greater than the estimate for 

ordinary regression is approximately 58%.  
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Figure 7. A comparison of results from simple linear regression, fuzzy linear regression and observed peak flow 

from the 2005 flood.  

The importance of this aspect of fuzzy number analysis is that the risk of an event like a flood is 

directly included in the method. If a certain threshold of risk is set by water managers, 

municipalities, or provincial government, then the results of these simulations can be used to 

trigger an Advisory, Flood Watch or Flood Warning. The results from this analysis show that 

these triggers may be set as early as 7 days, if a risk of flood is predicted by the model. This 

means that flood mitigation and preparation. 

 

Conclusions 

The flood that occurred in Alberta in 2013 was one of the worst natural disasters in Canadian 

history. The event highlighted the need for improved flood prediction methods. A fuzzy number 

based data-driven method is proposed in this paper to predict peak flow in the Bow River in 

Calgary using mean daily flow as input. This analysis was conducted at various time lags (1, 3 

and 7 days). The results show that peak flow, and the risk of flood, can be determined up to 7 

days in advance. The 2005 flood in Calgary, Alberta, was used as an example to illustrate the 

utility of the method.  
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