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Abstract  

A warmer climate is expected to lead to more serious natural disasters, such as heavy 

storms, prolonged droughts and frequent floods. For a high-density urban region, the 

flash flood problem may become worse due to possible increasing frequency and 

magnitude of short-duration rainfalls in the future. A Global Circulation Model (GCM) is 

a powerful tool to assess the climate change impact. However, the resolution of a GCM 

output is generally too coarse to be applicable to small regions directly. Two types of 

approaches, dynamical and statistical downscaling, could be used for bridging the gap 

between GCM and local climate information. Compared with dynamical downscaling, 

the statistical approach is more flexible and computationally less intensive. In addition, 

statistical downscaling tools may be sensitive to the resolution of large-scale predictors. 

In this study, two downscaling approaches are compared. The first is to use a statistical 

method (Automatic Statistical Downscaling, ASD) directly to downscale large-scale 

predictors (i.e. ERA-Interim Reanalysis data) to local rainfall. The second is to combine a 

dynamical (i.e. MM5) and a statistical method (ASD) to generate the station-level data. 

The study site is the City of Edmonton and the resolutions of large-scale GCM predictors 

and dynamical model output are about 150 km and 27 km, respectively. The results show 

that the downscaled results based on predictors from MM5 is better than that from 

ERA-Interim, in terms of both accuracy and uncertainty range.  
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Introduction 

Flash floods and urban waterlogging issues which are caused by short-duration heavy 

rainfalls are serious concerns of many city managers (Dai, 2013). It is also expected that, 

under climate change impact, more intense extreme events may appear and could lead to 

escalated damages (Coumou and Rahmstorf, 2012; Benestad et al., 2012). It is thus 

necessary to develop better modeling and prediction tools for evaluating the impacts of 

climate change and seeking adaptation strategies. General Circulation Models (GCMs) 

are powerful tools to provide climate change information for future conditions. There are 

many GCMs available, such as the HadCM3 (UK Hadley Centre for Climate Model 

version 3) (Pope et al., 2000) and CCSM3 (The Community Climate System Model, 

version 3) (Kiehl and Gent, 2004; Collins et al., 2004). However, GCMs are generally of 

coarse resolutions and their outputs are difficult to be used in prediction or to be coupled 

with hydrological model in small regions like urban areas (Kharin et al., 2005; Coumou 

and Rahmstorf, 2012). Over the past decades, dynamical downscaling and statistical 

downscaling are developed to help generating high resolution climate information from 

large-scale GCMs (Fowler et al., 2007). The dynamical approach could produce finer 

resolution climate data based on physical processes, but its computation is rather 

intensive (Wilby and Wigley, 1997). The statistical downscaling approach is 

computationally more efficient and easily transferable to different regions. However, it is 

limited by a lack of physical feedback of climate system and the assumption of 

stationarity. It is also affected by the selection of predictors, domain size and seasonal 

variations (Wilby and Wigley, 1997; Fowler et al., 2007). Both approaches have widely 

applied around the world. Examples can be found in Chandler and Wheater (2002), 

Hessami et al. (2008), Caldwel et al. (2009), Heikkilä et al. (2010), and Hwang et al. 

(2011). 

Some recent studies showed that the Regional Climate Model (RCM) or dynamical 

downscaling is weak in providing realistic extreme events (Orskaug et al., 2011; 

Benestad et al., 2012). Therefore, hybrid approaches, which couple the dynamical and 

statistical downscaling methods, are proposed. Chen et al. (2012) coupled CRCM 

(Canadian Regional Climate Model) and the statistical downscaling method (SDSM and 

Discriminant Analysis with weather typing approach), and indicated that downscaling 

based on the predictors from CRCM had a significant improvement than those obtained 

from NCEP reanalysis data. It appears that the coupled method could take the advantages 

of both dynamical and statistical methods, and may lead to more reliable results. 

However, there are still limited studies on such a topic and effects of coupling under 

different conditions need further verifications. Thus, the objective of this study is to 

examine the resolution effects of large-scale predictors on statistical downscaling of 

rainfall. The regional climate model, MM5, is applied to dynamically downscale 

ERA-Interim reanalysis data of 1.5
o
 x 1.5

o
 to a 27-km climate data for Edmonton, Canada. 

Then, a well-known statistical downscaling tool, the Automated Statistical Downscaling 
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(ASD), is applied based on two different sets of predictors (i.e ERA-Interim and MM5).  

 

Research Methodology 

In this study, two downscaling routes are applied: (i) statistical downscaling from 

large-scale predictors of ERA-Interim to local stations; (ii) statistical downscaling from 

the output of regional climate model (MM5) to local stations. The detailed descriptions of 

dynamical and statistical methods are given as follows. Figure 1 shows the framework of 

research methodology. 

MM5 (Dynamical downscaling) 

The dynamical downscaling model for this study is based on the MM5 model which is a 

meso-scale numerical climate prediction system (http://www.mmm.ucar.edu/mm5/). The 

boundary of MM5 model is driven by ERA-Interim reanalysis data of ECMWF 

(European Centre for Medium-Range Weather Forecasts). The domains are centered at 

51.5
o
N and 118.0

o
W. The spatial grid resolution of MM5 is 27 km, and the total number 

of grids is 76 (latitude) × 90 (longitude). The temporal resolution of MM5 output is 

6-hourly, and it is aggregated to daily for supporting statistical downscaling. Other 

technical details of MM5 setting could refer to Kuo et al. (2014) and Hanrahan et al. 

(2014). 
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Figure 1. The framework of research methodology. 

ASD (Statistical downscaling) 

The ASD model is a linear regression-based model, consisting of two sub-models: 

precipitation occurrence and amount models. They can be described as follows (Hessami 

et al., 2008).  





n

j

ijji pO
1

0                                 (1a) 





n

j

iijji epR
1

0

25.0                            (1b) 

where Oi is the daily precipitation occurrence, Ri is the daily amount, p is the predictor, α 

and β is the model parameters, e is the error. In this model, the error is assumed to follow 

a Gaussian distribution. Other details could refer to the study of Hessami et al. (2008).  
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Figure 2. Study area and grid boundary of different predictors (the map is adapted from website 

http://en.academic.ru/dic.nsf/enwiki/236092). 

 

Study Area and Data 

Edmonton is located in central Alberta, Canada (Figure 2). The city has an annual 
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precipitation of about 480 mm. The precipitation is mainly concentrated in summer and 

the wettest month is July. Therefore, the data from May to August of the period 

1984-2010 is used for rainfall downscaling. The rain gauge is located in the central part 

of the city. The large-scale reanalysis data is based on the ERA- Interim with a 1.5
o
 ×1.5

o
 

spatial resolution. The meso-scale dynamical model is MM5, with a spatial resolution at 

27 km. The temporal resolution for statistical downscaling is daily. In order to compare 

two sets of downscaled results fairly, we try to keep the potential predictors (i.e. total 

input variables) from MM5 and ERA-Interim as consistent as possible. ASD can 

automatically choose the key predictors based on the backward stepwise regression. 

Figure 2 also shows the boundaries of different datasets.  

 

Results  

In this study, 50 ensembles are generated by ASD for each downscaling route. Figure 3 

presents four statistical properties of downscaled rainfall for the month of August, 

including monthly mean (MEAN), standard deviation (STD), probability of wet day 

(PWET) and maximum rainfall (MAX). The shown value is the absolute error between 

the observed data and the average of 50 ensembles. From the figure, MM5 performs 

better in terms of MEAN, STD and MAX. The ERA-Interim data reproduce the PWET 

better, but also shows an overestimation as MM5. For uncertainty interval (UI), it is 

evaluated by the equation: UI = [abs(Osim-upp-Oobs)/Oobs] + [abs(Osim-low-Oobs)/Oobs], 

where Osim-upp and Osim-low are the upper and lower boundaries of simulated data, 

respectively, and Oobs is the observed data. It is indicated that, MM5 and ERA-Interim 

demonstrate a similar level of uncertainty interval. Table 1 lists the RMSE and UI for the 

results for four months. The result based on MM5 shows smaller RMSE values and 

narrower uncertainty ranges than those based on ERA-Interim. In particular, MM5 

predictors could lead to a much higher accuracy in reproducing MEAN using the ASD 

method. For MAX, MM5 performs as good as ERA-Interim. For different months, MM5 

shows a notable better performance for May, June and August, and slightly better 

performance for July. Overall, the results based on MM5 predictors are superior to those 

based on ERA-Interim reanalysis data.  

 

Table 1. The RMSE and Uncertainty Interval for simulated results using MM5 and ERA-Interim.  

Property 
MM5 ERA-Interim 

RMSE Uncertainty Interval RMSE Uncertainty Interval 

MEAN 0.042 0.349 0.299 0.360 

STD 0.930 0.417 1.022 0.479 

PWET 0.051 0.261 0.078 0.358 

MAX 13.750 1.130 13.778 1.209 
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Conclusions 

By comparison, the downscaled results based on predictors from MM5 showed a better 

performance in reproducing daily rainfall than those based on ERA-Interim reanalysis 

data. It seems that higher resolution RCM data could potentially improve the statistical 

downscaling skills in building the relationship of coarse and fine weather variables for 

urban areas. However, the result was only based on one station and one method, and the 

data period focused only on the summer season. For future work, we plan to add more 

stations and statistical downscaling models for a more comprehensive investigation.  
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Figure 3. The downscaled results using ASD based on MM5 and ERA-Interim for August. The value 

shown in the figure is the absolute error between the observed data and the average value of 50 simulated 

ensembles.  
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