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THE CALCULUS CAMPAIGN

TERRANCE J. QUINN

I will discuss some of the difficulties that I have encountered in
teaching Calculus. I will follow this, in Part I, with certain
examples that my students have been finding helpful in
reaching a preliminary notion of derivative. The focus in Part
II is the genesis of the Fundamental Theorem of Calculus.

Introduction
Over the years I have become increasingly aware that

there are problems with the standard textbook approach to
teaching calculus. That there is a problem can show up in many
ways, and in particular, in courses like Differential Equations,
for which Calculus is a prerequisite. I have often taught third
and fourth year courses in differential equations. The audience
for these courses has varied. In some cases the course was
intended for mathematics majors and concentrated on proofs
and theoretical development; in other cases for physicists and
engineers and concentrated on physical and technological
applications; and in other cases for secondary certification
students specializing in mathematics. The same problem,
however, has consistently emerged in all of these student
groups.

What I am speaking of, frankly, is a lack of basic
understanding in Calculus. With that said, please know that the
kind of basic understanding that I speak of is not the further
more specialized understanding needed to generate proofs in
Advanced Calculus courses. And it is not merely an
inconvenience. Based on several years of teaching experience,
it has become evident that this lack in understanding
undermines the possibility of elementary competence, whether
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in merely computational applications or in theoretical
development.

For instance, in one third-year differential equations class,
I was teaching motion of a mass-projectile. Part of the problem
was to integrate an equation. Together, we worked through to
an answer. That there was a problem was revealed when I
asked the students particular questions about the motion of the
projectile. In friendly and candid discussion we discovered that
while most were at least familiar with some of the
differentiation and integration formulas, several did not know
how to apply these formulas; and even some of the “A -
Calculus students” admitted that they did not really know what
these formulas meant. It is noteworthy that, in particular, while
most of the students could reproduce the general formula

1( )n nd x nx
dx

−= , none of the students could give either reasons

or examples regarding the derivatives of 2x  and 3x .
That there are inadequacies with the standard textbook

approach is of course well known. As already described, one
common situation is where the “Calculus Graduate”
remembers some of the symbolism but is otherwise unable to
solve particular problems. To address this issue in the United
States, various studies have been done. Results of these studies
have included the Harvard Calculus Reform, together with a
number of follow-up textbooks intended to be in keeping with
the precepts of the Reform. It is not my purpose here, however,
to enter into a study of Calculus Reform as such. Note also that
I will leave to a further paper any discussion of axiomatics,
proof, or other possible generalities.

Let’s look instead to the beginnings of the story. The
Calculus was discovered in the 17th century, by both Newton
(1642 - 1727) in England and Leibniz (1646 - 1716) in
Germany. Their discoveries led to solutions of what at that
time were outstanding problems in mathematics and physics.
In particular, the tremendous success of Newton’s mechanics
and theory of gravitation, formulated in terms of accelerations,
is well known. But these initial discoveries were only the first
stage of a long and fascinating campaign. In military terms,
Newton and Leibniz established a beach-head. It was several
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decades, however, before a follow-up advancement occurred.
Like any discovery, in addition to answering questions, the

results and techniques of the early Calculus also called forth
new questions. In particular, there was the notion of limit that,
while eminently useful, needed definition. This problem was
solved by at least three mathematicians, namely, Cauchy (1789
- 1857), the Czech mathematician Bolzano (1781 - 1848) and
the Portuguese mathematician Anastácio da Cunha (1744 -
1787), all of whom discovered essentially the same definitions
of limit and convergence, with Anastácio da Cunha doing his
work as early as 1782.1

Following on Cauchy’s discoveries, Riemann (1826 -
1866) further advanced the front-lines of Calculus by
discovering a definition of “area” and other integrals. When it
exists, the Riemann Integral of a function is then a limit (as in
Cauchy’s work) of “Riemann sums” (over partitions of
diminishing norm).

The developments of Cauchy and Riemann are, however,
beyond the scope of the present article. The prior discoveries
of Newton (1642 - 1727) and Leibniz (1646 - 1716) were made
long before the work of Cauchy and then Riemann. And with
regard to teaching Calculus, I have found that students
(mathematics majors and non-majors alike) can enjoy being
guided along a similar path. In particular, I have found that
introducing definitions of limit and limit of Riemann sum too
soon can leave students more than a little puzzled and
wondering, for example, why The Fundamental Theorem is
called Fundamental.

The advancement and envelopment that comes with
definition can be an ultimate objective, especially for the
mathematics major. On the other hand, students have often
expressed to me their delight with the basic understanding
reached by starting with simple examples of advancing areas
and front-lines. So the primary purpose of this article is not a

                                                          
1 The works of Bolzano and Anastácio da Cunha “appeared in the far

corners of Europe and were not appreciated, or even read, in the
mathematical centers of France and Germany. Thus it was out of Cauchy’s
work that today’s notions developed.”  Victor J. Katz, A History of
Mathematics: An Introduction (New York: Addison-Wesley: 1998), Ch. 16.
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development of the subject based on the explicit formulation of
the definitions of Cauchy, Riemann, et al., and as would be
called for in a course in Advanced Calculus. My purpose,
rather, is to encourage the implicit and definite beginnings of a
first understanding that can be had by a beginner, whether the
beginner is mainly interested in applications or is hoping
perhaps to do later work with axioms and proofs. I have found
that by following this approach students typically reach a
command of the general formulas for themselves; and for the
mathematics major, the need for definition can become
poignant.

Part I: Ratios of Change – The Derivative
The main objective of Part I is to use “increasingly

accurate” ratios in order to determine a “rate of change”. The
examples are of certain domestic situations that my students
have found engaging.

1. The Sneaky Farmer
Suppose that farmer Sam say, has a square field, 100 yards

by 100 yards. Two adjacent sides of the field are bordered by
straight roads, and the other two sides are bordered by the large
fallow pastures owned by farmer Frank.

Sam is not happy with the situation, for he would like to
own more property. But the roads, together with Frank’s
pastures, have Sam’s square property hemmed in. What to do?

Sam has his clever moments; and it is not past him to be
somewhat sneaky. He is even capable of being a little
dishonest, if the need arises. So Sam devises a plan. He decides
to increase the size of his property “little by little”, hoping that
by doing this slowly enough, his neighbor Frank won’t notice.
Sam is patient. He plans, in fact, to work his scheme over a
period of one year.

Here is what Sam plans to do under cover of darkness. The
first night he will sneak out to the property. He will mark one
extra yard along the road-sides of his property. There are
property marker posts both where the properties meet the road
and at the far corner away from the roads - so three marker
posts in all. He plans to dig three new holes and then move the
marker posts to the new holes.
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Sam will then wait one month. After one month, the
original post-holes will be well covered with growth, and he
will then go on to repeat this process for twelve months. At the
end of twelve months Sam hopes to take what he feels will be a
well-earned rest.

The question now is: At what rate will Sam be increasing
his property?

We can start by looking at a diagram for the layout of
property.

At the beginning of the first month, Sam’s property is 100
yards by 100 yards. Because of Sam’s “extension program”, at
the end of the first month the marked field will be 101 yards by
101 yards.

                       100 yards                  1 yard

1 yard

100 yards

Looking to a diagram, the added property comes from the
rectangles along each edge together with the square corner.
Following convention, this new property can be calculated to
be (100x1) + (100x1) + (1x1) = 2(100) + 1 square yards.

Let’s follow Sam in his scheme. The second month, his
marked property will change from 101 yards by 101 yards to
102 yards by 102 yards.
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Again, by looking to a diagram, we can calculate the
added property to be (101x1) + (101x1) + (1x1) = 2(101) + 1
square yards.

                        101 yards                1 yard

1 yard

101 yards

Do you have a pattern yet? Let’s do another month. I leave the
diagram as an exercise.

At the beginning of the third month, the field will be 102
yards by 102 yards. Moving the marker posts, the field will
then become 103 yards by 103 yards.

The added property is (102x1) + (102x1) + (1x1) = 2(102)
+ 1 square yards.

So at each stage, except for the 1 square yard at the corner,
the monthly contribution to new property will be 2 times the
straight length of the square border of Sam’s property with
Frank’s property.

Can we bring more precision to this? Using algebra, let’s
suppose that, at the beginning of a month, the length of the
field marked out by Sam is x  yards by x  yards. He then
changes the markers to give 1x +  yards by 1x +  yards.
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                          x  yards                 1 yard

1 yard

x  yards

So, using the conventional formulas for area, the added
property is ( 1) ( 1) (1 1) 2 1x x x× + × + × = +  square yards. In
other words, except for the square yard at the corner, the
monthly rate at which Sam gets new property is 2 times the
boundary of the square field, that is, the monthly rate is 2x .

2. The Sneaky Apprentice
In this example, suppose that an apprentice Al works in a

metal workshop. Al is very keen on working with metal. In
addition to what he does at his master’s workshop, Al also has
several projects of his own that he works on at home in his free
time. One project that is especially dear to him requires
quantities of lead. As luck would have it, there is a cube of lead
at the workshop. Unfortunately, somewhat like his country
cousin Sam, Al is not always honest. So Al too decides on a
somewhat devious plan.

The cube of lead at the workshop is 100 mm by 100 mm
by 100 mm (mm = millimeters). Al hopes that his master Mack
won’t notice small changes to the cube. In fact, there is a
device at the workshop that might be handy for this. The block
of lead can be placed in a steel corner. There are hot blades that
can then be used to shave lead off of each of the three exposed
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sides.
On each occasion, Al plans to remove 1 mm from all three

sides. That way the cubic shape will be preserved and the
changes will hopefully go unnoticed. Like his cousin Sam, he
plans to do this only once a month.

Again, the question is, what is the monthly rate at which
Al will get lead for his home projects?

At the beginning of the first month the cube of lead is 100
mm by 100 mm by 100 mm. After Al shaves the cube, the
remaining lead will measure 99 mm by 99 mm by 99 mm.

                                  99 mm             1 mm

1 mm

99 mm

99 mm

                                  1 mm

Now, the convention for calculating the quantity of a solid is to
multiply the measured lengths of perpendicular sides. (This is
usually called volume.) Looking to the diagram, the lead that
Al will take will consist of three cut portions from each square
surface, three narrow rectangular edges, and one cubic mm at
the common corner. So, in total, Al takes away 3(99x99x1) +
3(99x1x1) + 1(1x1x1) = 29,403 + 297 + 1 cubic millimeters of
lead.
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The next month Al will repeat the process.

                                   98 mm            1 mm

1 mm

98 mm

98 mm

                                  1 mm

This time the amount of lead that Al takes way is 3(98x98x1) +
3(98x1x1) + 1(1x1x1) = 28,812 + 84 + 1 cubic millimeters of
lead.

Do you see a pattern?
The main contribution to the lead that Al is taking away

comes from the three exposed square surfaces of the cube.
Again, using algebra, we can be more precise. Suppose that the
cube of lead measures x  mm by x  mm by x  mm.

If Al then removes 1 millimeter from each of the three
exposed sides; he will take home 3[(x-1) x (x-1) x 1] + 3[(x-1)
x 1 x 1] + 1[1 x 1 x 1] = 3x2 - 3x + 1 cubic millimetres. In other
words, taking lead from the three exposed x  by x  square
surfaces (each of which is 2x  cubic millimeters), the main
contribution to the monthly rate at which Al removes the lead
would be 23x .
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                                    1x −  mm          1 mm

1mm

1x −  mm

1x −  mm

                                   1 mm

3. Refinement of the Rates
(a) The Farm Field

Suppose that Sam the Sneaky Farmer reconsiders his
original plan. His desire to have more property remains, but he
suspects that, after all, surely his neighbor Frank would notice
if the field markers were changed by a full yard each month.
So, taking a more cautious approach, Sam decides to increase
his field, not by 1 yard each month as originally planned, but
by 1/3 of a yard (1 foot) each month.

Let’s now ask the same question as before: What is the
monthly rate at which Sam will be increasing his claimed
property?

As before, at the beginning of the first month, the
dimensions of the field are 100 yards by 100 yards. Once the
length of the field along the road is changed by 1/3 yard, the
new field will then be (100 + 1/3) yards by (100 + 1/3) yards.

As before, we can look to the diagram (exercise). The
added property comes from the two outer rectangles along the
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field lengths together with the square corner furthest from the
road junction. Calculating, Sam would obtain an additional
(100x1/3) + (100x1/3) + (1/3x1/3) = 2(100 x 1/3) + 1/9 square
yards.

Sam now wants to know how efficient this is, in other
words, he wants to know how much is he getting for his effort.
One way to answer this question is to calculate the ratio [added
property] to [change in length], that is, the change in property
per change in length. Using the above sum, we get [2(100 x
1/3) + 1/9] divided by [1/3], which reduces to 2(100) + 1/3.

In exactly the same way, if we look at what happens in the
second month, we get a ratio of [2(100 + 1/3) x1/3) + 1/9]
divided by [1/3] which reduces to 2(100 + 1/3) + 1/3.

As with Sam’s original plan, again let’s see what algebra
can reveal. If the original length of each side is x , and this is
increased by 1/3, then the added property is
( 1/ 3) ( 1/ 3) (1/ 3 1/ 3) (2 1/ 3) (1/ 3 1/ 3)x x x× + × + × = × + × . So
the ratio [additional ground cover] to [change in length] would
be 2 1/ 3x +  square yards of property per yard changed in
property length. This is much the same as the result from
Sam’s original plan. But this time, the approximate rate is even
closer to being exactly 2x.

Comparing the two calculations, the smaller change in
length corresponds to a ratio of change that is closer to being
2x  (2 times the starting length x ). To push this further, let’s
give the change in length a name, h  say. (In Sam’s first plan,

1h = ; in the revised plan, 1/ 3h = .) But, now using h  in place
of any particular number, perhaps we will be able to detect a
general pattern of change.

If the original length is x , and this length is changed by
h , then the new length would be x h+ . Just as before, the
added property will come from the rectangles along the edge of
the new square field together with the corner that is h  yards by
h  yards.

The ratio [additional ground cover] to [change in length]
would then be 2x h+ . So, as anticipated from the numerical
examples, the smaller h  is, the closer the ratio of change
2x h+  is to being 2x .
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                        x  yards                  h  yards

h  yards

x  yards

(b) The Cube of Lead
Can we now get some similar type of result for the cube of

lead? For Al too decides to be more careful. Instead of 1 mm
per month, he decides to take ½ mm of length each month.

Remark: At this point (having completed the square field
example), I have found it can be a good exercise for the student
to do some numerical calculations for the cube by themselves.
Most of the time, the student is already onto the game. They
compare the two cases and find that, for a starting length of x ,
the ratio [change in quantity of lead] to [change in length] is
closer to 23x  for the smaller change in length ½ mm. Again, a
key point here is that the 2x  term is the quantity of lead from
each face of the cube. The factor of 3 comes from there being 3
faces where the change takes place.2 Following this exercise, I
usually jump to the ratio of change of lead for an arbitrary
(non-zero) change of length h . That is, the change in volume

                                                          
2 This key point of course re-appears in the multi-variable calculus as

Green’s Theorem, The Divergence Theorem, and the other “Stokes”
Theorems.
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of lead given by 3 3[ ( ) ]x x h− −  compared to the change in
length given by ( )x x h h− − = .

Suppose then that the cube that Al starts with is x  mm by
x  mm by x  mm, and that he shaves off h  mm.

                                 x h−  mm        h  mm

h  mm

x h−  mm

x h−  mm

                                   h  mm

As can be seen from the diagram, the lead that Al obtains in
this way comes from 3 cut faces, 3 narrow edges, and the
corner piece. This adds to 2 2 33( ) 3( )x h h x h h h− + − +  cubic
millimeters of lead.

From the diagram, the main contribution to the lead that
Al takes away comes from the three cut faces. Again, using
algebra, we can be more precise:

The ratio of change [change in quantity of lead] to [change
in length of the cube] is the ratio of 3 3[ ( ) ]x x h− −  to

( )x x h h− − = . Doing the calculation, this is [3(x–h)2h +
3(x–h)h2 + h3]/h = 3(x–h)2 + 3(x–h) + h2 = 3x2 - 3xh + h2.

Keep in mind that x  is a fixed number – the number x  is
whatever the starting length is for the sides of the cube; and the
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number h  is whatever is removed from x . So the calculation
reveals both that the ratio depends on how much is actually
removed, and that the smaller h  is, the closer the ratio of
change is to 23x .

Summary for Squares and Cubes

The Square
Suppose that a square has dimensions x  by x . Then for

small changes in length of the sides, the ratio [change in area]
to [change in length] is approximately 2x . That is, the ratio is
approximately 2 times the length. The smaller the change in
length, the closer this ratio is to being exactly 2x .

The Cube
Suppose that a cube has dimensions x  by x  by x . Then

for small changes in length of the sides, the ratio [change in
volume] to [change in length] is approximately 23x . That is,
the ratio is approximately 3 times the surface area of each face.
The smaller the change in length, the closer this ratio is to
being exactly 23x .

4. Higher Powers
Suppose that Ralph owns a property out of town where he

makes a vegetable-based liquid fertilizer for gardens. Ralph
sells this fluid and transports it in metal cubes. The cubic
containers are made by a machine that, within limits, can be
adjusted to any length from 1 foot to 5 feet. Since the larger
cubes contain more liquid, they are heavier and require further
reinforcement. So Ralph sells his fertilizer at a rate that
depends on the size of the cube in which he delivers the cube.
If a cube is 2 feet by 2 feet by 2 feet, then Ralph charges 2
dollars per cubic foot. If a cube is 2.5 feet by 2.5 feet by 2.5
feet, then he charges 2.5 dollars per cubic foot. And so on. So,
within the limits of construction, for a cube that is x  feet by x
feet by x  feet, Ralph sells his fertilizer at x  dollars per cubic
foot. That means that Ralph’s revenue on a cube that is x  feet
by x  feet by x  feet is (the number of cubic feet of fertilizer) x
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( x  dollars per cubic foot) 3 4x x x× =  dollars.
Evidently, the revenue increases with the length of the

cube. Ralph would like to know more. He would like to know
at what rate his revenue increases with an increase in the length
of the cubes.

Just as with Sam the farmer and Al the apprentice, we can
compare the changes in quantities - in this case the ratio in
question is [change in the revenue] to [change in length]. This
will give an approximation to the rate at which the revenue 4x
increases per change in linear foot x . Motivated by our
success with algebra in the previous examples, we can
calculate this ratio explicitly. If x  is a given length of cube,
and the length is increased by h , then the change in revenue is

4 4[( ) ]x h x+ − . So the ratio of change is 4 4[( ) ]x h x+ − /h =
[4x3h + 6x2h2 + 4xh3 + h4]/h = 4x3 + 6x2h + 4xh2 + h3.

As before, remember that x  is a fixed number. So, from
the algebra, the ratio depends on the change h ; and the smaller
h  is the closer the ratio is to 34x . In other words, for a
relatively small h , Ralph would be increasing his revenue at a
rate that is approximately 34x  dollars per linear foot.

From here, students often jump to the generalization for
higher powers of x. What we have so far is that for quantities
of the form 2x , 3x , and 4x , a small change h  in x  produces
rates of change that, respectively, are approximately 2x , 23x
and 34x . Students will conjecture that for quantities of the
form 5x , 6x , 7x , ... , a small change h  in x  will produce rates
of change that, respectively, are approximately 45x , 56x , 67x ,
... . Note that quantities involving higher powers can be
illustrated using investment examples that involve compound
interest.

Now it is one thing to make a conjecture (based on
patterns in symbolism). Can we do more? Since algebra has
been useful so far, can we do for the higher powers of x
something like what we did for the first few powers?

Let’s look again at the quartic 4x . The ratio of change is
4 4[( ) ] /x h x h+ − . In the above calculation, I calculated the

numerator explicitly. Let’s do this again, but this time let’s not
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focus so much on getting the explicit result, but on determining
the role played by h in the ratio.

The numerator is the change in the quartic
4 4 4[( ) ] ( )( )( )( )x h x x h x h x h x h x+ − = + + + + − . The product of

parentheses expands to gives a sum of products. Each product
in the sum consists of some x ’s and some h ’s - but always
four factors in total. The first term will be 4x , and this will
cancel with the 4x− . Tracing the multiplication through the
parentheses, there will be four ways to get terms of the form

3x h , and the rest of the terms will be of the form 2 2x h , 3xh
and 4h . But the ratio of change is obtained by dividing

4 4[( ) ]x h x+ −  by h . So the ratio of change will be of the form
34x  + (a sum products of terms - each of which has at least

one power of h ). Again, remember that x  is fixed. It follows
that the smaller h  is, the closer the ratio will be to 34x . In
other words, for small changes h  in x , the rate of change of
the quantity 4x  is approximately 34x . Of course, we already
have this result. But do you see perhaps how this approach can
be applied to the higher powers?3

Let’s test this approach on a power of x  that is beyond
easy explicit calculation. Suppose then that a quantity is of the
form 10x  say. Then a ratio of change is 10 10[( ) ] /x h x h+ − .
Writing this out as above, the numerator is

10[( )( ).....( )]x h x h x h x+ + + − , where the parentheses ( )x h+
are repeated 10 times. Again, tracing through the
multiplication, there will be one term of the form 10x , which
cancels with the 10x− . There will be 10 ways of getting 9x h ;
and the rest of the numerator will be a sum of products, each of
which has at least 2 powers of h . Calculating the ratio cancels
one h in each product. The ratio 10 10[( ) ] /x h x h+ −  is then of
the form 910x  + (a sum of products, each of which has at least
one h ). So, for small changes h , the rate of change of the
quantity 10x  will be approximately 910x .

                                                          
3 Note that this approach does not require using the general

formulation of the binomial theorem.
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Student Exercises:
1. Using the above approach, explain why, for small values of
h , the approximate value of the ratio 20 20[( ) ] /x h x h+ −  is

1920x .
2. Suppose that n is a non-negative integer. Using the above
approach, explain why, for small values of h , the approximate
value of the ratio [( ) ] /n nx h x h+ −  is 1nnx − .

5. A Common Denominator
We have been studying rates of change in quantities that

are given by powers of x . In each case, we get a notion of a
distinguished quantity. For instance, in the case of Sam the
Sneaky Farmer, if his field is originally 100 yards by 100
yards, and if he were to increase the length of his field by h ,
then the ratio [Change in Property]/[Change in Length] =
2(100) h+ . As already discussed, the smaller the change in
length h , the closer this ratio is to being exactly 2(100). This
distinguished quantity 2(100) need not be an actual ratio of
change; but actual ratios can be made close to this quantity, by
choosing h  to be small. Historically, it is this approximation to
2(100) that gave rise to the name limit. The distinguished
quantity 2(100) is more precisely called the limit of

2 2[(100 ) 100 ] /h h+ − , as h  goes to zero (that is, as h  gets
small). Our general result for the square field was that, for
small h , the ratio 2 2[(100 ) 100 ] / 2h h x h+ − = +  is close to the
distinguished value 2x . So the value of the limit depends on
x , the starting value for the length.

This can all be a little tricky to write down. It is generally
accepted that both Newton (1642-1727) in England and his
contemporary Leibniz (1646-1716) in Germany independently
discovered these limits. Where Newton used Calculus to
establish a new physics, it is the notation of Leibniz that better
represents the quantities involved and suggests further
mathematical results (such as the chain rule and the product
rule). Following Leibniz then, we obtain the following

formulas: 2( ) 2d x x
dx

= , 3 2( ) 3d x x
dx

= , 4 3( ) 4d x x
dx

= , and so
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on. The symbols d
dx

 express the following: (a) we consider

ratios of differences, hence the symbols “ d ” for “difference”;
and (b) the answer need not be any particular ratio, but is a
distinguished quantity, the quantity to which the particular
ratios are close for small changes h  in x .

PART II: A Lucky Advance – The Fundamental Theorem
of Calculus

For Part II, the topic is the particular instance of rate of
change determined by an advancing “area”. The examples that
I use are drawn from World War II and the liberation of Nazi-
occupied Europe. My students have been enjoying the stories
of the advancing front-lines and have been using them to make
their own first breakthroughs toward The Fundamental
Theorem of Calculus.

1. Normandy and Beyond
D-Day was June 6, 1944 -- Allied Forces landed on the

beaches of Normandy and began Operation Overlord, the
invasion of Nazi-occupied Europe. During late July and early
August, the “Third Army spearheaded Operation Cobra, the
great breakout from the Normandy bridgehead. In a matter of
days, what had been a troubling and potentially deadly
stalemate, turned into one of the most dramatic Allied victories
of World War II. The German army in Normandy was
shattered, and its survivors were forced to retreat in disarray,
mostly on foot, behind the River Seine”4. Paris was soon
liberated from Nazi occupation and army groups consisting of
British, American and Canadian forces swept northward into
Belgium and eastern France. At the same time, as part of the
U.S. Twelfth Army Group under General Bradley, Patton’s
U.S. Third Army moved across southern Normandy and then
eastward. Allied army groups were to converge later along the
Rhine.

                                                          
4 John Nelson Rickard, Patton at Bay: The Lorraine Campaign,

September to December 1944 (Westport CT: Praeger Publishing: 1999), xi.
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Famous in military history are Lucky’s5 advances across
Europe, despite extreme enemy opposition and difficult terrain.
The Third Army, however, was dogged in its purpose.
Overcoming numerous difficulties, in only 231 days Patton
lead his Incredible Third6 to victory over occupying Nazi
Forces, liberation of the terrible death camps, and the liberation
of European territories ranging from Normandy to Germany7.

2. Advancement of a Front-Line
Gains in territory depended on circumstances in the field,

and so varied from one battle to another. One question then is
the following: Is there some way to determine the “rate” at
which territory is obtained by an advancing army?

Let’s look at the progress of Lucky’s U.S. Fourth Armored
Division in the Eifel campaign. In a startling advance, the
Fourth Armored established the Trier-Koblenz corridor,
breaking Nazi front-lines from Trier to the Rhine (Koblenz) in
just three days.

For purposes of illustration, let’s suppose that the width of
the Fourth’s advancing front-line was approximately 4 miles.

If this “4 mile” front-line was advanced 1 mile, then the
territory gained would have been 4 miles in width and 1 mile in
depth, that is, 4 square miles. Advancing the front-line a
second mile, another 4 square miles would have been obtained.
So, for an advance of 2 miles, the territory gained would be
4x2 square miles; and so on. In other words, one way that we
can determine the “rate” at which territory is gained is by using
the width of the front-line. In this example, where the front-line
is 4 miles in width, the territory gained is 8 square miles per
mile that the front-line is advanced.

                                                          
5 Military groups were commonly given pseudonyms. “Lucky” was

the name Patton gave to the Third Army.
6 Gen. Paul D. Harkins, with Eds. of Army Times Pub. Co., When the

Third Cracked Europe - The Story of Patton’s Incredible Army (Harrisburg
PA: Stackpole Books, 1969).

7 Robert Allen, Lucky Forward – The History of Patton’s Third U.S.
Army (New York: The Vanguard Press, 1947), 395.
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THIRD ARMY’S BREAKTHROUGH TO THE RHINE IN THE EIFEL

Brohl

Andernach

     Prum

Koblenz

 Front Lines
  Prum 
 River

Moselle River

PALATINATE
     Trier

    Scale:  0 --- 5 --- 10 MILES

Of course, the actual width of front-lines was not usually
constant, but would change through the course of battle. But, if
the width changed, that change would have taken place in
stages. So, even if the front-line width was not constant at 4
miles, for as long as it was approximately 4 miles across, the
gain in territory would have occurred at a rate of approximately
4 square miles per mile advanced. As the front-line width was
expanded to 5 miles, then for as long as that front-line width
was approximately 5 miles, the rate at which territory was
gained would have been 5 square miles per mile advanced.
And so on. So, one answer to our question is that if territory is
advanced along a straight front-line, then the rate at which
territory would be gained would be given by the width of the
front-line.

3. Expansion of Front-Lines
You may be thinking that front-lines not only change in

length, but typically are not straight. So, for our next example,
let’s return to an earlier part of the war. After being taken by
the combined forces of U.S. Seventh Army under Patton and
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British Eighth Army under Montgomery, Sicily was the base
for a jump-off8 to mainland Italy9. On September 3rd, 1943,
“two divisions of Montgomery’s Eighth Army crossed from
Messina to Reggio di Calabria and advanced up the Italian toe
against slight resistance.”10

MESSINA TO REGGIO DI CALABRIA

 THE TOE OF ITALY

                                                   Advancing Front-lines

                        Messina
Reggio di
Calabria Advancing

Front-lines
SICILY

THE MEDITERRANEAN SEA

Again, our question is the rate at which territory is obtained by
an advancing army. So let’s imagine the advance of the Eighth
Army as it pushed its front-lines across the toe of Italy. The
territory was bound on the west by the shore-line of the
Straight of Messina and on the south by the Mediterranean Sea.
So imagine the expansion of Allied territory occurring in two
directions at once, both north and east.

The region is almost square and so, again for purposes of

                                                          
8 On July 10th, 1943, British Eighth Army under General Montgomery

and U.S. Seventh Army under General Patton landed on the south coast of
Sicily. The Allies entered Messina on August 16th, the campaign having
lasted 38 days.

9 Henry Steele Commager, ed. The Pocket History of the Second
World War (New York: Pocket Books, 1945), 334-335.

10 The main attack on was planned for Salerno and Naples.
Montgomery hoped to sweep north, to trap enemy forces between the toe
and Salerno. Ibid, p. 337.
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illustration, consider a northern front-line of 6 miles say, and
an eastern front-line also of 6 miles.

The reader may now recall the square field of Sam the
Farmer, from Part I of this paper. Algebraically, the
calculations for change in the square area are the same in both
examples. Following the clue from Section II.2 above on the
advancement of a straight front-line, the focus now, however,
is specifically on how the total length of the front-line fits into
the picture.

                        6 miles                    1 mile

1 mile

6 miles

Suppose, then, that the front-lines are both advanced by 1 mile,
from 6 miles across to 7 miles across. Then the main territory
gained would be along each front-line, with an extra 1 square
mile at the north-east corner. So the total territory gained
would be (6x1) + (6x1) + (1x1) square miles. If both front-
lines are again advanced, this time from 7 miles across to 8
miles across, then the territory gained would be (7x1) + (7x1)
+ (1x1). And so on. That is, if the square region is x  miles
across the northern front-line and also x  miles across the
eastern front-line, then (except for the 1 square mile at the
north-east corner), an advance of all front-lines by 1 mile gains
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2x  square miles of territory. In other words, for every mile
that the front-lines are advanced, the gain in square miles of
territory is simply the length of the front lines that have been
advanced.

But what if the front-lines along the x  by x  square
territory are advanced some distance less than 1 mile? Say, for
example, the front-lines are advanced only 1/2 mile.

Then the gain in territory would be ( x )x(1/2) + ( x )x(1/2)
+ (1/2)x(1/2) = ( 2x )x(1/2) +(1/4) square miles. As it turns out,
we get essentially the same result as for the advance of 1 mile,
that is, that the main contribution to the gain in territory is
simply the length of the front-lines advanced (which is 2x )
times the distance advanced (which is 1/2). This time,
however, with the advance of only 1/2 mile, the extra territory
at the north-east corner is even less significant than before, for
this time there is only an additional (1/2)x(1/2) square miles
unaccounted for in the product (length of front-line)x(distance
advanced).

As we did in Part I, to reach a basic pattern it can help to
bring some algebra into play. For whatever the advance
happens to be, h  say, we can consider the ratio of square miles
gained compared to distance advanced.

From the diagram, an advance of the front-lines by h
provides a gain in territory equal to

2( ) ( ) ( ) 2x h x h h h xh h× + × + × = + . Note that when h  is
small, 2h  is even smaller. (Think of the example above with h
= 1/2; and other examples like 1/3 of 1/3; 1/4 of 1/4, etc.) So
the smaller h  is, the closer the gain in territory is to being just
2xh . To clinch things, let’s calculate the ratio of territory
gained compared to distance advanced. Dividing 22xh h+  by
h , we get 2x h+ .

What does this mean? In Part I, we already worked
through to a notion of limit. What is new here? Remember that
x  is the initial distance across one edge of the square front-
lines. Our question now adds further significance to the ratio
by relating it to the total length of the advanced front-lines. Our
result, then, is that the smaller the advance considered, the
closer the ratio [territory gained]: [distance advanced] is to
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being exactly the total length of the front-lines, namely 2x .
47                       x  miles                   h  miles

h  miles

x  miles

4. The Fundamental Theorem
You may realize that the calculations that we have done so

far will work for other things besides advancing armies.
Historically, x - y  coordinate lines are added to the picture. So
imagine a region (“territory”) that is bounded on the left by the
y-axis, across the bottom by the x -axis, across the top by a
curve, and on the right by a vertical straight “front-line” at
some x .

                                                                  ( )f x             ( )f x h+

x         x h+
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Just as the length of the front-line in a military campaign may
vary as the army advances in the x -direction, the y -height of
the region in the diagram also can vary. At an x  along the x -
axis, let’s denote the height up the curve by ( )f x . Let ( )A x
denote the “area” of the region from the y -axis up to the front-
line at x . If the front-line of the region is advanced from x  to
x h+ , then the ratio of area gained compared to the advance h
is [ ( ) ( )] /A x h A x h+ − . But, when h  is small, the main
contribution to the area gained ( ) ( )A x h A x+ −  is the
rectangular area ( ( ) )f x h× . So, for small h , except for the
small corner region, the ratio is approximately ( )f x , the
length of the advancing front-line.11 Or as it is said in modern
Calculus (that is, after Cauchy, Bolzano and da Cunha), “the
limit as h  goes to zero of [ ( ) ( )] /A x h A x h+ −  is ( )f x ”. Using

the notation of Leibniz, ( )dA f x
dx

= .

As mentioned in the Introduction, in the 19th century
Riemann discovered a definition for area using limits (limit
defined by Cauchy et al.) of finite sums (of rectangular
approximations, that is, Riemann Sums). So in notation after
Riemann, the area bounded on the left by the y -axis; below by
the x -axis; above by the curve f ; and on the right at x  by the
vertical (“front-line”) of height ( )y f x= , is denoted

0

x

A fdx= ∫ . (The symbol ∫  is a stylized S for “sum” -

indicating the fact that the area is determined by a limit of
sums.) Expressing our result in this notation, we get that the

rate of change of area is 
0

[ ] ( )
xdA d fdx f x

dx dx
= =∫ . This result is

called Part I of the Fundamental Theorem of Calculus.
Historically there were two problems: One problem was to

                                                          
11 The interested reader might now consult one of the standard

textbooks, where this situation is discussed in the fuller context of a
complete Calculus course. For instance, see James Stewart, Calculus – 4th

Edition (Pacific Grove CA: Brooks/Cole, 1999), 338.
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determine relative rate of change of a quantity (especially
change of distance with respect to time); and the solution
discovered by both Newton and Leibniz was given by the limit
of ratios of differences -- now called the derivative. The other
problem had a different focus, but was actually a special case.
For the other problem was to determine (in particular) the rate
of change of an advancing area.

Part I of the Fundamental Theorem relates these two
problems, and at the same time provides a solution to what is
often called the “inverse problem” or anti-derivative problem:
Find a function whose derivative with respect to x  (rate of
change) is equal to a given a function ( )f x . Part I of the
Fundamental Theorem shows that any changing area whose
front-line at x  has length ( )f x  will do. In particular, one such

function will be 
0

x

A fdx= ∫ , representing the area under the

graph of ( )f x  itself.
Part II of the Fundamental Theorem concerns the solution

of the anti-derivative problem. In specific content, however,
Part II is a distinct result. For the basis of Part II of the theorem
is not “area” or “Riemann integrals”, as such, but regards the
“uniqueness” of a solution to an anti-derivative problem. In
particular, where Part I of the theorem produces one anti-
derivative for a given function ( )f x , we may enquire into the
range of all possible anti-derivatives for ( )f x . But, because a
derivative is a ratio of change, and not an actual function
value, it follows that if two functions ( )F x  and ( )G x  have the
same derivative (that is, if they both change in exactly the same
way), then as functions they must differ by a constant. (This is
like saying that if two cars are driving along a road at the same
speed in the same direction, then the distance between them
stays the same.) Applying this to Part I, we find that not only is

the area 
0

x

A fdx= ∫  an anti-derivative for ( )f x , but except for

being able to add in a constant, it is the only anti-derivative for
( )f x . So the general anti-derivative for ( )f x  is given by
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0

( )
x

F x fdx C= +∫ , where C  can be any constant. This can be

re-phrased using Riemann’s notation: Let a  and b  be real

numbers, and consider 
0 0

( ) ( )
b a

F b F a fdx fdx− = −∫ ∫ . Under

present hypotheses, this difference is a difference of areas
under the graph of f , from x a=  to x b= ; and in Riemann’s

notation this area is written 
b

a

fdx∫ . The usual modern statement

of Part II of The Fundamental Theorem is then that if F  is any

anti-derivative for f  (that is dF f
dx

= ), then

( ) ( )
b

a

F b F a fdx− = ∫ .

Still keeping to the preliminary context (and so not
requiring the precision of definitions and hypotheses on terms
and functions involved), we can now state at least part of why
The Fundamental Theorem is fundamental: (1) it shows exactly
how to produce an anti-derivative; (2) it establishes the general
form of all possible anti-derivatives; and (3) in empirical
science, it provides a basis for the two-way pivot between
possible abstract law involving a derivative and measurements
of a coordinate that would be obtained in experiment.

Concluding Remarks: Calculus and Beyond
In this paper, which can be taken as a primer for a

Calculus student, I have not discussed “velocity”, “tangent
lines” or “dynamics”. Again, my purpose has not been an
axiomatic development of the Calculus as such, but rather a
fostering of the (two) basic insights that can help a student
begin his or her reach toward the Calculus. Newton, of course,
did much more than merely begin. And in his research into the
dynamics of the planets, he made free use of coordinate
techniques. Consequently, his results on rate of change apply
also to limits of ratios obtained from slopes of secants of a
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graph. In other words, he discovered how to calculate the slope
of a tangent line. His work then contributed toward the
possibility of a verifiable geometry of space and time. In
particular, from his (Calculus-based) abstract laws of
gravitation, Newton was able to account for Kepler’s Laws
regarding the orbits of planets.12

As it later turned out, the truly fundamental nature of The
Fundamental Theorem of Calculus allowed for a profound 20th

century generalization that, because of its origins in the
Calculus of Newton and Leibniz, also is called The
Fundamental Theorem of Calculus (but, for “Manifolds”). The
20th century theorem also generalizes three 19th century
integration theorems that were of special interest to physicists,
namely Green’s Theorem, The Divergence Theorem, and
Stokes’ Theorem. [So another name for the 20th century
version of The Fundamental Theorem of Calculus (for
Manifolds) is Stokes’ Theorem (for Manifolds)]. The 20th

century theorem distinguishes itself from the classical calculus
theorem partly by the fact that it embraces higher dimensions.

There are clues to the generalization to higher dimensions

                                                          
12 In Kepler’s Three Laws of planetary motion, the first is a particular

rule for orbits of planets; the second relates directly to a rate of change of an
“area” (area not yet defined in Kepler’s time); and the third directly regards
certain space and time measurements. The three laws together are: (1) A
planet’s orbit is elliptical, with the sun at one of the foci; (2) The focal
radius from the sun to the planet sweeps out equal areas in equal times; and
(3) The squares of the times required for any two planets to make complete
orbits about the sun is proportional to the cubes of their mean distances
from the sun. (See, for example, David Burton’s The History of
Mathematics: An Introduction, 4th ed (New York: McGraw-Hill, 1999),
335. For a detailed and illuminating telling of Kepler’s struggles and
success, see Katz, Section 10.3.4.) Note that in Kepler’s second law, the
rate of change of the (“orbital”) area is a constant for each planet. So while
Kepler’s Laws were subsumed by Newton’s system of abstract laws, they
remain important in their own right, as precursor to conservation laws and
The Variational Calculus. Over the last century, conservation laws have
been proving to be of central importance in empirical science. As shown by
Noether et al., many conservation laws can be derived in Variational
Calculus from the 20th century generalization of The Fundamental Theorem
of Calculus for Manifolds. (See the last two paragraphs of this paper.)
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in Calculus itself. Recall that 2( ) 2d x x
dx

= , 3 2( ) 3d x x
dx

= ,

4 3( ) 4d x x
dx

= , and so on. If (as in the examples discussed in

this paper) we consider the elementary geometry involved,
then we get the following: The rate of change of a “2-
dimensional square area” is the “1-dimensional length” of the
advancing “front-line”; the rate of change of a “3-dimensional
cubic volume” is the “2-dimensional area” of the advancing
“front-surface”; and so on. It is a precise grasp and formulation
of this “and so on” that leads to the generalized Fundamental
Theorem of Calculus for Manifolds. For, going from the
examples of powers of x , the rate of change of an n -
dimensional quantity is the 1n − - dimensional quantity of the
advancing “front-surface”. Where the classical theorem
formulates the two-way pivot between measurement of a
coordinate and abstract law involving a derivative, the
generalized theorem formulates the two-way pivot between
measurement of several coordinates and abstract law involving
quantities with several rates of change. So the Fundamental
Theorem of Calculus is not only fundamental in Calculus itself,
but leads to fundamental results, in both mathematics and
science, of on-going general significance. It is a well-named
theorem.
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